88 research outputs found

    Carbon storage and floristic dynamics in Peruvian peatland ecosystems

    Get PDF
    In this thesis I took a novel interdisciplinary approach involving remote sensing, ecological and palaeoecological techniques to address some of the most fundamental gaps in our understanding of Peruvian peatlands. The existence of these peatlands was only recently confirmed and although they were known to store large quantities of carbon, initial assessments of carbon stocks were highly uncertain. In addition, little was known of their biodiversity or how they have developed. Firstly, I used data fusion remote sensing and extensive field data to generate a high resolution, landscape scale map of peatland ecosystems in the largest peatland complex in Amazonia. This approach confirmed that peatland ecosystems in northern Peru are the most carbon dense ecosystems in Amazonia storing up to 1391 ± 710 Mg C ha-1, and have a total carbon stock of 3.14 (0.44–8.15) Pg C, which equates to nearly 50 % of the total above-ground carbon stocks of the whole country. Secondly, I established a new network of floristic inventory plots and described the composition and diversity of peatland tree communities. I demonstrated that peatland pole forest has the lowest alpha diversity of all tree communities in lowland Amazonia. In contrast, by comparing these data with three larger plot networks from other ecosystems in the region, I also showed that they have surprisingly high beta diversity, and harbour important populations of species that were previously thought to be restricted to other habitat types such as white sand forest. Finally, pollen analysis was undertaken across eight peat cores from two sites to test the significance of historical processes in determining current patterns of composition and diversity. Both autogenic (internal biotic) and allogenic (external environmental) processes operating through time were important determinants of current floristic patterns. Demonstrating that such historical processes have an important role in determining the composition of tropical ecosystems is valuable as they are often overlooked – or in many cases impossible to study in such detail. Overall this thesis shows that peatland ecosystems in the Peruvian Amazon have high conservation value both as a carbon store and for regional ecosystem diversity. In addition, peatland ecosystems provide an exciting opportunity to investigate the importance of fundamental historical and ecological processes for determining the composition and diversity of tropical forests

    Risks to carbon storage from land-use change revealed by peat thickness maps of Peru

    Get PDF
    This work was funded by NERC (grant ref. NE/R000751/1) to I.T.L., A.H., K.H.R., E.T.A.M., C.M.A., T.R.B., G.D. and E.C.D.G.; Leverhulme Trust (grant ref. RPG-2018-306) to K.H.R., L.E.S.C. and C.E.W.; Gordon and Betty Moore Foundation (grant no. 5439, MonANPeru network) to T.R.B., E.N.H.C. and G.F.; Wildlife Conservation Society to E.N.H.C.; Concytec/British Council/Embajada Británica Lima/Newton Fund (grant ref. 220–2018) to E.N.H.C. and J.D.; Concytec/NERC/Embajada Británica Lima/Newton Fund (grant ref. 001–2019) to E.N.H.C. and N.D.; the governments of the United States (grant no. MTO-069018) and Norway (grant agreement no. QZA-12/0882) to K.H.; and NERC Knowledge Exchange Fellowship (grant ref no. NE/V018760/1) to E.N.H.C.Tropical peatlands are among the most carbon-dense ecosystems but land-use change has led to the loss of large peatland areas, associated with substantial greenhouse gas emissions. To design effective conservation and restoration policies, maps of the location and carbon storage of tropical peatlands are vital. This is especially so in countries such as Peru where the distribution of its large, hydrologically intact peatlands is poorly known. Here field and remote sensing data support the model development of peatland extent and thickness for lowland Peruvian Amazonia. We estimate a peatland area of 62,714 km2 (5th and 95th confidence interval percentiles of 58,325 and 67,102 km2, respectively) and carbon stock of 5.4 (2.6–10.6) PgC, a value approaching the entire above-ground carbon stock of Peru but contained within just 5% of its land area. Combining the map of peatland extent with national land-cover data we reveal small but growing areas of deforestation and associated CO2 emissions from peat decomposition due to conversion to mining, urban areas and agriculture. The emissions from peatland areas classified as forest in 2000 represent 1–4% of Peruvian CO2 forest emissions between 2000 and 2016. We suggest that bespoke monitoring, protection and sustainable management of tropical peatlands are required to avoid further degradation and CO2 emissions.PostprintPeer reviewe

    Understanding different dominance patterns in western Amazonian forests

    Get PDF
    Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.Publisher PDFPeer reviewe

    Resurgence of a Nation’s Radiation Science Driven by Its Nuclear Industry Needs

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-26, pub-electronic 2021-11-23Publication status: PublishedThis article describes the radiation facilities and associated sample preparation, management, and analysis equipment currently in place at the Dalton Cumbrian Facility, a facility which opened in 2011 to support the UK’s nuclear industry. Examples of measurements performed using these facilities are presented to illustrate their versatility and the breadth of research they make possible. Results are presented from research which furthers our understanding of radiation damage to polymeric materials, radiolytic yield of gaseous products in situations relevant to nuclear materials, radiation chemistry in light water reactor cooling systems, material chemistry relevant to immobilization of nuclear waste, and radiation-induced corrosion of fuel cladding elements. Applications of radiation chemistry relevant to health care are also described. Research concerning the mechanisms of radioprotection by dietary carotenoids is reported. An ongoing open-labware project to develop a suite of modular sample handling components suited to radiation research is described, as is the development of a new neutron source able to provide directional beams of neutrons

    The distribution and amount of carbon in the largest peatland complex in Amazonia

    Get PDF
    Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha−1). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Rethinking the fall of the planter class

    No full text
    This issue of Atlantic Studies began life as a one-day conference held at Chawton House Library in Hampshire, UK, and funded by the University of Southampton. The conference aimed, like this issue, to bring together scholars currently working on the history of the British West Indian planter class in the eighteenth and nineteenth centuries and to discuss how, when, and why the fortunes of the planters went into decline. As this introduction notes, the difficulties faced by the planter class in the British West Indies from the 1780s onwards were an early episode in a wider drama of decline for New World plantation economies. The American historian Lowell Ragatz published the first detailed historical account of their fall. His work helped to inform the influential arguments of Eric Williams, which were later challenged by Seymour Drescher. Recent research has begun to offer fresh perspectives on the debate about the decline of the planters, and this collection brings together articles taking a variety of new approaches to the topic, encompassing economic, political, cultural, and social histor
    corecore