440 research outputs found

    Challenges of Loss to Follow-up in Tuberculosis Research.

    Get PDF
    In studies evaluating methods for diagnosing tuberculosis (TB), follow-up to verify the presence or absence of active TB is crucial and high dropout rates may significantly affect the validity of the results. In a study assessing the diagnostic performance of the QuantiFERON®-TB Gold In-Tube test in TB suspect children in Tanzania, factors influencing patient adherence to attend follow-up examinations and reasons for not attending were examined. In 160 children who attended and 102 children who did not attend scheduled 2-month follow-up baseline health characteristics, demographic data and risk factors for not attending follow-up were determined. Qualitative interviews were used to understand patient and caretakers reasons for not returning for scheduled follow-up. Being treated for active tb in the dots program (OR: 4.14; 95% CI:1.99-8.62;p-value<0.001) and receiving money for the bus fare (OR:129; 95% CI 16->100;P-value<0.001) were positive predictors for attending follow-up at 2 months, and 21/85(25%) of children not attending scheduled follow-up had died. Interviews revealed that limited financial resources, i.e. lack of money for transportation and poor communication, were related to non-adherence. Patients lost to follow-up is a potential problem for TB research. Receiving money for transportation to the hospital and communication is crucial for adherence to follow-up conducted at a study facility. Strategies to ensure follow-up should be part of any study protocol

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    A chain mechanism for flagellum growth.

    Get PDF
    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip

    The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts

    Get PDF
    The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP

    Teratology Primer-2nd Edition (7/9/2010)

    Get PDF
    Foreword: What is Teratology? “What a piece of work is an embryo!” as Hamlet might have said. “In form and moving how express and admirable! In complexity how infinite!” It starts as a single cell, which by repeated divisions gives rise to many genetically identical cells. These cells receive signals from their surroundings and from one another as to where they are in this ball of cells —front or back, right or left, headwards or tailwards, and what they are destined to become. Each cell commits itself to being one of many types; the cells migrate, combine into tissues, or get out of the way by dying at predetermined times and places. The tissues signal one another to take their own pathways; they bend, twist, and form organs. An organism emerges. This wondrous transformation from single celled simplicity to myriad-celled complexity is programmed by genes that, in the greatest mystery of all, are turned on and off at specified times and places to coordinate the process. It is a wonder that this marvelously emergent operation, where there are so many opportunities for mistakes, ever produces a well-formed and functional organism. And sometimes it doesn’t. Mistakes occur. Defective genes may disturb development in ways that lead to death or to malformations. Extrinsic factors may do the same. “Teratogenic” refers to factors that cause malformations, whether they be genes or environmental agents. The word comes from the Greek “teras,” for “monster,” a term applied in ancient times to babies with severe malformations, which were considered portents or, in the Latin, “monstra.” Malformations can happen in many ways. For example, when the neural plate rolls up to form the neural tube, it may not close completely, resulting in a neural tube defect—anencephaly if the opening is in the head region, or spina bifida if it is lower down. The embryonic processes that form the face may fail to fuse, resulting in a cleft lip. Later, the shelves that will form the palate may fail to move from the vertical to the horizontal, where they should meet in the midline and fuse, resulting in a cleft palate. Or they may meet, but fail to fuse, with the same result. The forebrain may fail to induce the overlying tissue to form the eye, so there is no eye (anophthalmia). The tissues between the toes may fail to break down as they should, and the toes remain webbed. Experimental teratology flourished in the 19th century, and embryologists knew well that the development of bird and frog embryos could be deranged by environmental “insults,” such as lack of oxygen (hypoxia). But the mammalian uterus was thought to be an impregnable barrier that would protect the embryo from such threats. By exclusion, mammalian malformations must be genetic, it was thought. In the early 1940s, several events changed this view. In Australia an astute ophthalmologist, Norman Gregg, established a connection between maternal rubella (German measles) and the triad of cataracts, heart malformations, and deafness. In Cincinnati Josef Warkany, an Austrian pediatrician showed that depriving female rats of vitamin B (riboflavin) could cause malformations in their offspring— one of the early experimental demonstrations of a teratogen. Warkany was trying to produce congenital cretinism by putting the rats on an iodine deficient diet. The diet did indeed cause malformations, but not because of the iodine deficiency; depleting the diet of iodine had also depleted it of riboflavin! Several other teratogens were found in experimental animals, including nitrogen mustard (an anti cancer drug), trypan blue (a dye), and hypoxia (lack of oxygen). The pendulum was swinging back; it seemed that malformations were not genetically, but environmentally caused. In Montreal, in the early 1950s, Clarke Fraser’s group wanted to bring genetics back into the picture. They had found that treating pregnant mice with cortisone caused cleft palate in the offspring, and showed that the frequency was high in some strains and low in others. The only difference was in the genes. So began “teratogenetics,” the study of how genes influence the embryo’s susceptibility to teratogens. The McGill group went on to develop the idea that an embryo’s genetically determined, normal, pattern of development could influence its susceptibility to a teratogen— the multifactorial threshold concept. For instance, an embryo must move its palate shelves from vertical to horizontal before a certain critical point or they will not meet and fuse. A teratogen that causes cleft palate by delaying shelf movement beyond this point is more likely to do so in an embryo whose genes normally move its shelves late. As studies of the basis for abnormal development progressed, patterns began to appear, and the principles of teratology were developed. These stated, in summary, that the probability of a malformation being produced by a teratogen depends on the dose of the agent, the stage at which the embryo is exposed, and the genotype of the embryo and mother. The number of mammalian teratogens grew, and those who worked with them began to meet from time to time, to talk about what they were finding, leading, in 1960, to the formation of the Teratology Society. There were, of course, concerns about whether these experimental teratogens would be a threat to human embryos, but it was thought, by me at least, that they were all “sledgehammer blows,” that would be teratogenic in people only at doses far above those to which human embryos would be exposed. So not to worry, or so we thought. Then came thalidomide, a totally unexpected catastrophe. The discovery that ordinary doses of this supposedly “harmless” sleeping pill and anti-nauseant could cause severe malformations in human babies galvanized this new field of teratology. Scientists who had been quietly working in their laboratories suddenly found themselves spending much of their time in conferences and workshops, sitting on advisory committees, acting as consultants for pharmaceutical companies, regulatory agencies, and lawyers, as well as redesigning their research plans. The field of teratology and developmental toxicology expanded rapidly. The following pages will show how far we have come, and how many important questions still remain to be answered. A lot of effort has gone into developing ways to predict how much of a hazard a particular experimental teratogen would be to the human embryo (chapters 9–19). It was recognized that animal studies might not prove a drug was “safe” for the human embryo (in spite of great pressure from legislators and the public to do so), since species can vary in their responses to teratogenic exposures. A number of human teratogens have been identified, and some, suspected of teratogenicity, have been exonerated—at least of a detectable risk (chapters 21–32). Regulations for testing drugs before market release have greatly improved (chapter 14). Other chapters deal with how much such things as population studies (chapter 11), post-marketing surveillance (chapter 13), and systems biology (chapter 16) add to our understanding. And, in a major advance, the maternal role of folate in preventing neural tube defects and other birth defects is being exploited (chapter 32). Encouraging women to take folic acid supplements and adding folate to flour have produced dramatic falls in the frequency of neural tube defects in many parts of the world. Progress has been made not only in the use of animal studies to predict human risks, but also to illumine how, and under what circumstances, teratogens act to produce malformations (chapters 2–8). These studies have contributed greatly to our knowledge of abnormal and also normal development. Now we are beginning to see exactly when and where the genes turn on and off in the embryo, to appreciate how they guide development and to gain exciting new insights into how genes and teratogens interact. The prospects for progress in the war on birth defects were never brighter. F. Clarke Fraser McGill University (Emeritus) Montreal, Quebec, Canad

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    De-Novo Transcriptome Sequencing of a Normalized cDNA Pool from Influenza Infected Ferrets

    Get PDF
    The ferret is commonly used as a model for studies of infectious diseases. The genomic sequence of this animal model is not yet characterized, and only a limited number of fully annotated cDNAs are currently available in GenBank. The majority of genes involved in innate or adaptive immune response are still lacking, restricting molecular genetic analysis of host response in the ferret model. To enable de novo identification of transcriptionally active ferret genes in response to infection, we performed de-novo transcriptome sequencing of animals infected with H1N1 A/California/07/2009. We also included splenocytes induced with bacterial lipopolysaccharide to allow for identification of transcripts specifically induced by Gram-negative bacteria. We pooled and normalized the cDNA library in order to delimit the risk of sequencing only highly expressed genes. While normalization of the cDNA library removes the possibility of assessing expression changes between individual animals, it has been shown to increase identification of low abundant transcripts. In this study, we identified more than 19000 partial ferret transcripts, including more than 1000 gene orthologs known to be involved in the innate and the adaptive immune response

    Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    Get PDF
    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism's life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1,031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals

    Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis

    Get PDF
    Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis

    New Variants and Age Shift to High Fatality Groups Contribute to Severe Successive Waves in the 2009 Influenza Pandemic in Taiwan

    Get PDF
    Past influenza pandemics have been characterized by the signature feature of multiple waves. However, the reasons for multiple waves in a pandemic are not understood. Successive waves in the 2009 influenza pandemic, with a sharp increase in hospitalized and fatal cases, occurred in Taiwan during the winter of 2010. In this study, we sought to discover possible contributors to the multiple waves in this influenza pandemic. We conducted a large-scale analysis of 4703 isolates in an unbiased manner to monitor the emergence, dominance and replacement of various variants. Based on the data from influenza surveillance and epidemic curves of each variant clade, we defined virologically and temporally distinct waves of the 2009 pandemic in Taiwan from May 2009 to April 2011 as waves 1 and 2, an interwave period and wave 3. Except for wave 3, each wave was dominated by one distinct variant. In wave 3, three variants emerged and co-circulated, and formed distinct phylogenetic clades, based on the hemagglutinin (HA) genes and other segments. The severity of influenza was represented as the case fatality ratio (CFR) in the hospitalized cases. The CFRs in waves 1 and 2, the interwave period and wave 3 were 6.4%, 5.1%, 15.2% and 9.8%, respectively. The results highlight the association of virus evolution and variable influenza severity. Further analysis revealed that the major affected groups were shifted in the waves to older individuals, who had higher age-specific CFRs. The successive pandemic waves create challenges for the strategic preparedness of health authorities and make the pandemic uncertain and variable. Our findings indicate that the emergence of new variants and age shift to high fatality groups might contribute potentially to the occurrence of successive severe pandemic waves and offer insights into the adjustment of national responses to mitigate influenza pandemics
    corecore