115 research outputs found
Phonon contributions to the entropies of hP24 and fcc Co3V
Inelastic neutron-scattering spectra and neutron-diffraction patterns were measured on the alloy Co3V at temperatures from 1073-1513 K, where the hP24 (ordered hexagonal) and fee structures are the equilibrium states of the alloy. Phonon density of states (DOS) curves were calculated from the inelastic-scattering spectra, allowing estimates of the vibrational entropy in the harmonic and quasiharmonic approximations. The vibrational entropy of the hP24-fcc phase transition at 1323 K was found to be 0.07k(B)/atom. The anharmonic contributions to the entropy over a temperature range of 100 K were comparable to the vibrational entropy of this phase transition. The anharmonic softening of the phonon DOS was only slightly larger for the hP24 than the fee phase, however, so the anharmonic effects contribute only slightly to the difference in entropy of the two phases. The simple Gruneisen approximation was inadequate for predicting the thermal softening of the phonon DOS
A small angle neutron scattering and Mössbauer spectrometry study of magnetic structures in nanocrystalline Ni3Fe
Results are reported from small angle neutron scattering and Mössbauer spectrometry measurements on nanocrystalline Ni3Fe. The nanocrystalline materials were prepared by mechanical attrition and studied in the as-milled state, after annealing at 265 °C to relieve internal stress, and after annealing 600 °C to prepare a control sample comprising large crystals. The small angle neutron scattering (SANS) measurements were performed for a range of applied magnetic fields. Small differences were found in how the different samples reached magnetic saturation. From the SANS data obtained at magnetic saturation, we found little difference in the nuclear scattering of the as-milled material and the material annealed at 265 °C. Reductions in nuclear scattering and magnetic scattering were observed for the control sample, and this was interpreted as grain growth. The material annealed at 265 °C also showed a reduction in magnetic SANS compared to the as-milled material. This was interpreted as an increase in magnetic moments of atoms at the grain boundaries after a low temperature annealing. Both Mössbauer spectroscopy and small angle neutron scattering showed an increase in the grain boundary magnetic moments after the 265 °C annealing (0.2 and 0.4µB/atom, respectively), even though there was little change in the grain boundary atomic density
Enhancement of the electronic contribution to the low temperature specific heat of Fe/Cr magnetic multilayer
We measured the low temperature specific heat of a sputtered
magnetic multilayer, as well as separate
thick Fe and Cr films. Magnetoresistance and magnetization
measurements on the multilayer demonstrated antiparallel coupling between the
Fe layers. Using microcalorimeters made in our group, we measured the specific
heat for and in magnetic fields up to for the multilayer. The
low temperature electronic specific heat coefficient of the multilayer in the
temperature range is . This is
significantly larger than that measured for the Fe or Cr films (5.4 and respectively). No magnetic field dependence of was
observed up to . These results can be explained by a softening of the
phonon modes observed in the same data and the presence of an Fe-Cr alloy phase
at the interfaces.Comment: 20 pages, 5 figure
Ideologies of time: How elite corporate actors engage the future
Our paper deals with how elite corporate actors in a Western capitalist-democratic society conceive of and prepare for the future. Paying attention to how senior officers of ten important Danish companies make sense of the future will help us to identify how particular temporal narratives are ideologically marked. This ideological dimension offers a common sense frame that is structured around a perceived inevitability of capitalism, a market economy as the basic organizational structure of the social and economic order, and an assumption of confident access to the future. Managers envisage their organization?s future and make plans for organizational action in a space where ?business as usual? reigns, and there is little engagement with the future as fundamentally open; as a time-yet-to-come. In using a conceptual lens inspired by the work of Fredric Jameson, we first explore the details of this presentism and a particular colonization of the future, and then linger over small disruptions in the narratives of our interviewees which point to what escapes or jars their common sense frame, explore the implicit meanings they assign to their agency, and also find clues and traces of temporal actions and strategies in their narratives that point to a subtly different engagement with time
Recommended from our members
Robots and Organization Studies: Why Robots Might Not Want to Steal Your Job
A number of recent high-profile studies of robotics and artificial intelligence (or AI) in economics and sociology have predicted that many jobs will soon disappear due to automation, with few new ones replacing them. While techno-optimists and techno-pessimists contest whether a jobless future is a positive development or not, this paper points to the elephant in the room. Despite successive waves of computerization (including advanced machine learning), jobs have not disappeared. And probably won’t in the near future. To explain why, some basic insights from organization studies can make a contribution. I propose the concept of ‘bounded automation’ to demonstrate how organizational forces mould the application of technology in the employment sector. If work does not vanish in the age of AI, then poorly paid jobs will most certainly proliferate, I argue. Finally, a case is made for the scholarly community to engage with wider social justice concerns. This I term public organization studies
Genomic Characterization of Haemophilus parasuis SH0165, a Highly Virulent Strain of Serovar 5 Prevalent in China
Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis
- …