3,174 research outputs found

    Spectrum in the broken phase of a λϕ4\lambda\phi^4 theory

    Full text link
    We derive the spectrum in the broken phase of a λϕ4\lambda\phi^4 theory, in the limit λ\lambda\to\infty, showing that this goes as even integers of a renormalized mass in agreement with recent lattice computations.Comment: 4 pages, 1 figure. Accepted for publication in International Journal of Modern Physics

    Photospheric and chromospheric activity in four young solar-type stars

    Full text link
    We present a photometric and spectroscopic study of four G-K dwarfs, namely HD 166, epsilon Eri, chi1 Ori and kappa1 Cet. In three cases, we find a clear spatial association between photospheric and chromospheric active regions. For chi1 Ori we do not find appreciable variations of photospheric temperature, and chromospheric Halpha emission. We applied a spot/plage model to the observed rotational modulation of temperature and flux to derive spot/plage parameters and to reconstruct a rough three-dimensional map of the outer atmosphere of kappa1 Cet, HD 166 and epsilon Eri.Comment: 12 pages, 3 tables, 9 figures. Submitted to Ap

    Exact solutions of classical scalar field equations

    Full text link
    We give a class of exact solutions of quartic scalar field theories. These solutions prove to be interesting as are characterized by the production of mass contributions arising from the nonlinear terms while maintaining a wave-like behavior. So, a quartic massless equation has a nonlinear wave solution with a dispersion relation of a massive wave and a quartic scalar theory gets its mass term renormalized in the dispersion relation through a term depending on the coupling and an integration constant. When spontaneous breaking of symmetry is considered, such wave-like solutions show how a mass term with the wrong sign and the nonlinearity give rise to a proper dispersion relation. These latter solutions do not change the sign maintaining the property of the selected value of the equilibrium state. Then, we use these solutions to obtain a quantum field theory for the case of a quartic massless field. We get the propagator from a first order correction showing that is consistent in the limit of a very large coupling. The spectrum of a massless quartic scalar field theory is then provided. From this we can conclude that, for an infinite countable number of exact classical solutions, there exist an infinite number of equivalent quantum field theories that are trivial in the limit of the coupling going to infinity.Comment: 7 pages, no figures. Added proof of existence of a zero mode and two more references. Accepted for publication in Journal of Nonlinear Mathematical Physic

    Green functions and nonlinear systems: Short time expansion

    Full text link
    We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher order corrections can be then computed giving a satisfactory agreement with numerical results. The relevance of these results relies on the possibility of fully exploiting a gradient expansion in both classical and quantum field theory granting the existence of a strong coupling expansion. Having a Green function in this regime in quantum field theory amounts to obtain the corresponding spectrum of the theory.Comment: 7 pages, 3 figures. Version accepted for publication in International Journal of Modern Physics

    Evidence from stellar rotation of enhanced disc dispersal: (I) The case of the triple visual system BD-21 1074 in the β\beta Pictoris association

    Full text link
    The early stage of stellar evolution is characterized by a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars. In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime. We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, vsiniv\sin{i} and chromospheric line fluxes. The rotation periods of the components differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. We can ascribe the rotation period difference to either different initial rotation periods or different disc-locking phases arising from the presence of the close companion C. In the specific case of BD-21 1074, the second scenario seems to be more favored. In our hypothesis of different disc-locking phase, any planet orbiting this star is likely formed very rapidly owing to a gravitational instability mechanism, rather than core accretion. Only a large difference of initial rotation periods alone could account for the observed period difference, leaving comparable disc lifetimes.Comment: Accepted by Astronomy & Astrophysics on July 31, 2014; Pages 12, Figs.

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    Learning node labels with multi-category Hopfield networks

    Get PDF
    In several real-world node label prediction problems on graphs, in fields ranging from computational biology to World Wide Web analysis, nodes can be partitioned into categories different from the classes to be predicted, on the basis of their characteristics or their common properties. Such partitions may provide further information about node classification that classical machine learning algorithms do not take into account. We introduce a novel family of parametric Hopfield networks (m-category Hopfield networks) and a novel algorithm (Hopfield multi-category \u2014 HoMCat ), designed to appropriately exploit the presence of property-based partitions of nodes into multiple categories. Moreover, the proposed model adopts a cost-sensitive learning strategy to prevent the remarkable decay in performance usually observed when instance labels are unbalanced, that is, when one class of labels is highly underrepresented than the other one. We validate the proposed model on both synthetic and real-world data, in the context of multi-species function prediction, where the classes to be predicted are the Gene Ontology terms and the categories the different species in the multi-species protein network. We carried out an intensive experimental validation, which on the one hand compares HoMCat with several state-of-the-art graph-based algorithms, and on the other hand reveals that exploiting meaningful prior partitions of input data can substantially improve classification performances

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ
    corecore