131 research outputs found
Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making
Food processing, especially thermal treatment, may have implications on mycotoxins in products available for consumers. This research work aimed to study how mycotoxin levels may be influenced by modifying the technological parameters of both whole grain and cocoa biscuit-making processes. The study was mainly focused on the following mycotoxins: deoxynivalenol, deoxynivalenol-3-glucoside, and the minor metabolite culmorin. Special emphasis was given to the recipe formulation, and to the baking conditions, using an industrial-scale operation, starting from naturally contaminated raw materials. Exploiting the power of Design of Experiments (DoE) and a dedicated LC-MS/MS method, the complexity of the different processes was investigated. The models obtained within this study showed a high goodness-of-fit suggesting that the pH and the baking time play important roles for minimizing mycotoxins in the final products, while the recipe formulation has an impact on the mycotoxins extractability by affecting the biscuit microstructure
Analytical Strategies for the Determination of Deoxynivalenol and its Modified Forms in Beer: A Mini Review
The aim of this review is to provide a brief overview of analytical methods used for the determination of deoxynivalenol and its modified forms deoxynivalenol-3-β-D-glucoside, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in beer. The analytical methods discussed involve gas chromatography coupled with flame ionization detection, electron capture detection and mass spectrometry as well as liquid chromatography hyphenated to ultra-violet detection and mass spectrometry. Special attention was paid to sample preparation. Immunochemical methods such as enzyme-linked immunosorbent assays (ELISAs) which represent efficient tools for fast screening of beer with no sample purification are also discussed
Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes
Fusarium head blight, caused by Fusarium graminearum, is a devastating disease of wheat. We developed near-isogenic lines (NILs) differing in the two strongest known F. graminearum resistance quantitative trait loci (QTLs), Qfhs.ndsu-3BS (also known as resistance gene Fhb1) and Qfhs.ifa-5A, which are located on the short arm of chromosome 3B and on chromosome 5A, respectively. These NILs showing different levels of resistance were used to identify transcripts that are changed significantly in a QTL-specific manner in response to the pathogen and between mock-inoculated samples. After inoculation with F. graminearum spores, 16 transcripts showed a significantly different response for Fhb1 and 352 for Qfhs.ifa-5A. Notably, we identified a lipid transfer protein which is constitutively at least 50-fold more abundant in plants carrying the resistant allele of Qfhs.ifa-5A. In addition to this candidate gene associated with Qfhs.ifa-5A, we identified a uridine diphosphate (UDP)-glycosyltransferase gene, designated TaUGT12887, exhibiting a positive difference in response to the pathogen in lines harbouring both QTLs relative to lines carrying only the Qfhs.ifa-5A resistance allele, suggesting Fhb1 dependence of this transcript. Yet, this dependence was observed only in the NIL with already higher basal resistance. The complete cDNA of TaUGT12887 was reconstituted from available wheat genomic sequences, and a synthetic recoded gene was expressed in a toxin-sensitive strain of Saccharomyces cerevisiae. This gene conferred deoxynivalenol resistance, albeit much weaker than that observed with the previously characterized barley HvUGT13248
Impact of environmental conditions on the concentrations of trichothecenes, their glucosides, and emerging fusarium toxins in naturally contaminated, irradiated, and fusarium iangsethiae inoculated oats
Trichothecenes produced by Fusarium species are commonly detected in oats. However, the ratios of the concentrations of free trichothecenes and their conjugates and how they are impacted by different interacting environmental conditions are not well documented. This study aims to examine the effect of water activity (0.95 and 0.98 aw) and temperature (20 and 25 °C) stress on the production of T-2 and HT-2 toxins, deoxynivalenol and their conjugates, as well as diacetoxyscirpenol (DAS). Multiple mycotoxins were detected using liquid chromatography–tandem mass spectrometry from 64 contaminated oat samples. The highest concentrations of HT-2-glucoside (HT-2-Glc) were observed at 0.98 aw and 20 °C, and were higher than other type A trichothecenes in the natural oats’ treatments. However, no statistical differences were found between the mean concentrations of HT-2-Glc and HT-2 toxins in all storage conditions analysed. DAS concentrations were generally low and highest at 0.95 aw and 20 °C, while deoxynivalenol-3-glucoside levels were highest at 0.98 aw and 20 °C in the naturally contaminated oats. Emerging mycotoxins such as beauvericin, moniliformin, and enniatins mostly increased with a rise in water activity and temperature in the naturally contaminated oats treatment. This study reinforces the importance of storage aw and temperature conditions in the high risk of free and modified toxin contamination of small cereal grains
MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research
Motivation: Liquid chromatography–mass spectrometry (LC/MS) is a key technique in metabolomics. Since the efficient assignment of MS signals to true biological metabolites becomes feasible in combination with in vivo stable isotopic labelling, our aim was to provide a new software tool for this purpose
In vivo contribution of deoxynivalenol-3-β-D-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics
Crossover animal trials were performed with intravenous and oral administration of deoxynivalenol-3-β-D-glucoside (DON3G) and deoxynivalenol (DON) to broiler chickens and pigs. Systemic plasma concentrations of DON, DON3G and de-epoxy-DON were quantified using liquid chromatography-tandem mass spectrometry. Liquid chromatography coupled to high-resolution mass spectrometry was used to unravel phase II metabolism of DON. Additionally for pigs, portal plasma was analysed to study presystemic hydrolysis and metabolism. Data were processed via tailor-made compartmental toxicokinetic models. The results in broiler chickens indicate that DON3G is not hydrolysed to DON in vivo. Furthermore, the absolute oral bioavailability of DON3G in broiler chickens was low (3.79 ± 2.68 %) and comparable to that of DON (5.56 ± 2.05 %). After PO DON3G administration to pigs, only DON was detected in plasma, indicating a complete presystemic hydrolysis of the absorbed fraction of DON3G. However, the absorbed fraction of DON3G, recovered as DON, was approximately 5 times lower than after PO DON administration, 16.1 ± 5.4 compared with 81.3 ± 17.4 %. Analysis of phase II metabolites revealed that biotransformation of DON and DON3G in pigs mainly consists of glucuronidation, whereas in chickens predominantly conjugation with sulphate occurred. The extent of phase II metabolism is notably higher for chickens than for pigs, which might explain the differences in sensitivity of these species to DON. Although in vitro studies demonstrate a decreased toxicity of DON3G compared with DON, the species-dependent toxicokinetic data and in vivo hydrolysis to DON illustrate the toxicological relevance and consequently the need for further research to establish a tolerable daily intake
Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats
Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline
processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1)
and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-
1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid
metabolism, is either unknown or discussed controversially.We produced high purity FB1, pHFB1a+b, HFB1
and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples
were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to
sphingosine (So) ratio by validated LC–MS/MS based methods. While the latter was significantly increased
in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins
were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the
liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline
and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest
that according food processing can reduce fumonisin toxicity for humans
Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana
<p>Abstract</p> <p>Background</p> <p>Brassinosteroids (BRs) are signaling molecules that play essential roles in the spatial regulation of plant growth and development. In contrast to other plant hormones BRs act locally, close to the sites of their synthesis, and thus homeostatic mechanisms must operate at the cellular level to equilibrate BR concentrations. Whilst it is recognized that levels of bioactive BRs are likely adjusted by controlling the relative rates of biosynthesis and by catabolism, few factors, which participate in these regulatory events, have as yet been identified. Previously we have shown that the UDP-glycosyltransferase UGT73C5 of <it>Arabidopsis thaliana </it>catalyzes 23-<it>O</it>-glucosylation of BRs and that glucosylation renders BRs inactive. This study identifies the closest homologue of UGT73C5, UGT73C6, as an enzyme that is also able to glucosylate BRs <it>in planta</it>.</p> <p>Results</p> <p>In a candidate gene approach, in which homologues of UGT73C5 were screened for their potential to induce BR deficiency when over-expressed in plants, UGT73C6 was identified as an enzyme that can glucosylate the BRs CS and BL at their 23-<it>O</it>-positions <it>in planta</it>. GUS reporter analysis indicates that <it>UGT73C6 </it>shows over-lapping, but also distinct expression patterns with <it>UGT73C5 </it>and YFP reporter data suggests that at the cellular level, both UGTs localize to the cytoplasm and to the nucleus. A liquid chromatography high-resolution mass spectrometry method for BR metabolite analysis was developed and applied to determine the kinetics of formation and the catabolic fate of BR-23-<it>O</it>-glucosides in wild type and <it>UGT73C5 </it>and <it>UGT73C6 </it>over-expression lines. This approach identified novel BR catabolites, which are considered to be BR-malonylglucosides, and provided first evidence indicating that glucosylation protects BRs from cellular removal. The physiological significance of BR glucosylation, and the possible role of UGT73C6 as a regulatory factor in this process are discussed in light of the results presented.</p> <p>Conclusion</p> <p>The present study generates essential knowledge and molecular and biochemical tools, that will allow for the verification of a potential physiological role of UGT73C6 in BR glucosylation and will facilitate the investigation of the functional significance of BR glucoside formation in plants.</p
Integrated microbiota–host–metabolome approaches reveal adaptive ruminal changes to prolonged high-grain feeding and phytogenic supplementation in cattle
Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity. While we did not find changes in histological evaluations, genes related with epithelial proliferation (IGF-1, IGF-1R, EGFR, and TBP) and ZO-1 were affected by the HG feeding. Integrative analyses allowed us to define the main drivers of difference for the rumen ecosystem in response to a HG diet, identified as ZO-1, MyD88, and genus Prevotella 1. PFA supplementation reduced the concentration of potentially harmful compounds in the rumen (e.g. dopamine and 5-aminovaleric acid) and increased the tolerance of the epithelium toward the microbiota by altering the expression of TLR-2, IL-6, and IL-10. The particle-associated rumen liquid microbiota showed a quicker adaptation potential to prolonged HG feeding compared to the other microenvironments investigated, especially by the end of the experiment
- …