55 research outputs found

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    A History of Clinical Transplantation

    Get PDF

    Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice.

    Get PDF
    The role of major histocompatibility complex (MHC) class I expression in control of the sensitivity of normal cells to natural killer (NK) cells was studied by the use of mutant mice made deficient for expression of beta 2-microglobulin (beta 2m) through homologous recombination in embryonal stem cells. T-cell blasts from beta 2m-deficient (beta 2m -/-) mice were killed by NK cells from normal mice in vitro, while beta 2m +/- blasts were resistant. The beta 2m defect also affected the NK effector cell repertoire: NK cells from beta 2m -/- mice failed to kill beta 2m -/- blasts, while they retained the ability to kill the prototype NK cell target lymphoma YAC-1, although at reduced levels. The inability to recognize beta 2m -/- blasts could be transferred with beta 2m -/- bone marrow to irradiated beta 2m-expressing mice. In contrast, the development of CD8+ T cells (deficient in beta 2m -/- mice) was restored in such chimera. These results indicate that loss of MHC class I/beta 2m expression is sufficient to render normal cells sensitive to NK cells, and that the same defect in the hemopoietic system of a mouse renders its NK cells tolerant to beta 2m-deficient but otherwise normal cells. In the beta 2m -/- mice, NK cells may be selected or educated by other bone marrow cells to tolerate the MHC class I deficiency. Alternatively, the specificity may be controlled directly by the class I molecules on the NK cells themselves

    Natural killer clones recognize specific soluble HLA class I molecules.

    No full text
    Enhancement of major histocompatibility complex (MHC) class I expression leads to protection from natural killer (NK) cell recognition in several systems. MHC class I gene products are released from the cell surface and can be found in sera as soluble forms. To investigate the possible immunoregulatory role of soluble HLA (sHLA) in NK cell-target recognition, several sHLA antigens were studied for their ability to induce NK cell cytotoxicity modulation. NK cell-target recognition was inhibited by the addition of sHLA during the cytotoxicity assay. Our results indicate that sHLA molecules can down-regulate NK killing at the effector level. Moreover, different NK clones are able to specifically recognize different sHLA antigens. Kp43 molecules seem to be involved in the NK recognition of sHLA-B7
    • …
    corecore