12 research outputs found

    Erzeugung organischer Halbleiter-Nanostrukturen durch Festphasenbenetzung

    Get PDF
    Die vorliegende Arbeit behandelt Fragen aus dem interdisziplinären Gebiet der Nanowissenschaften durch Untersuchungen mittels Rastertunnelmikroskopie und Computerchemie. Sie steht im Kontext der Entwicklung nanotechnologischer Herstellungsverfahren, die sich auf die "bottom-up"- Fertigungsstrategie beziehen. Diese Strategie verfolgt das Ziel, aus einzelnen elementaren Bausteinen (z.B. Molekülen) grössere funktionelle Strukturen und Systeme kontrolliert zusammenzusetzen. Kern dieser Arbeit ist die Vorstellung eines neuartigen Strukturbildungsprozesses auf molekularer Ebene und die Erschliessung dessen Potentials. Für diesen Prozess wird der Begriff "supramolekulare Festphasenbenetzung" vorgeschlagen. Damit wird ausgedrückt, dass die Ergebnisse als eine neue Bedingung für supramolekulare, spontane Strukturbildung (engl. self-assembly) interpretiert werden, die bei Raumtemperatur an der Grenze zwischen zwei festen Phasen stattfindet. Das vorgestellte Modell beschreibt diesen Prozess durch Nanokristalle, die – in einer Matrix suspendiert – bei Kontakt mit einer Kristalloberfläche ein Verhalten zeigen, das trotz vorhandener Festkörpereigenschaften (kristalline Ordnung) dem Verhalten flüssiger Tropfen bei der Benetzung von Oberflächen verwandt ist. Darauf aufbauend wird das technologische Potential des neuen Prozesses erschlossen: 1. Adsorbatstrukturen von einer Reihe organischer Halbleiter werden erstmals beschrieben. Damit wird zudem gezeigt, dass sich durch supramolekulare Festphasenbenetzung unlösliche Halbleitermoleküle sehr einfach und unter Umgebungsbedingungen geordnet adsorbieren lassen – ein Ergebnis, das sonst nur mit grossen Aufwand (z.B. Molekularstrahlepitaxie im Vakuum) möglich wäre. 2. Ein Erklärungsmodell wird entwickelt, mit dem sich die bislang unverstandene Möglichkeit molekularer Datenspeicherung mittels PTCDA- Moleküle theoretisch erklären und auf weitere, unter (1) vorgestellte Moleküle erweitern lässt. 3. Die Entwicklung eines Nanofabrikationskonzeptes wird vorgestellt, das eine lokale Kontrolle des Wachstums von Nanostrukturen ermöglicht. Der Vorteil gegenüber einer klassischen, Molekül für Molekül durchgeführten Nanostrukturierung liegt darin, dass durch die Spitze eines Rastertunnelmikroskops allein die Information über Wachstumsrichtungen in das System lokal einzubringen ist, die eigentliche Bildung der Strukturen jedoch durch selbständig ablaufende und somit qualitativ und zeitlich hoche¢ziente Wachstumsprozesse stattfindet ("geführtes Wachstum"). Damit lässt sich die bisherige Beschränkung von self-assembly auf streng periodische Strukturen durchbrechen und die vordefinierte Bildung komplexer Strukturen erreichen. 4. Ein Verfahren wird vorgestellt, das eine lokale Adsorption von Molekülen zu geordneten Schichten innerhalb einer Lage fremder Moleküle erlaubt und somit den Aufbau heterogener Adsorbatschichten ermöglicht

    Quantum Tunnelling to the Origin and Evolution of Life

    No full text

    of organic semiconductors with STM

    No full text
    approaches to control solid/solid wetting self-assembl

    Revealing the Physicochemical Basis of Organic Solid–Solid Wetting Deposition: Casimir-like Forces, Hydrophobic Collapse, and the Role of the Zeta Potential

    No full text
    Supramolecular self-assembly at the solid–solid interface enables the deposition and monolayer formation of insoluble organic semiconductors under ambient conditions. The underlying process, termed as the organic solid–solid wetting deposition (OSWD), generates two-dimensional adsorbates directly from dispersed three-dimensional organic crystals. This straightforward process has important implications in various fields of research and technology, such as in the domains of low-dimensional crystal engineering, the chemical doping and band gap engineering of graphene, and in the area of field-effect transistor fabrication. However, to date, lack of an in-depth understanding of the physicochemical basis of the OSWD prevented the identification of important parameters, essential to achieve a better control of the growth of monolayers and supramolecular assemblies with defined structures, sizes, and coverage areas. Here we propose a detailed model for the OSWD, derived from experimental and theoretical results that have been acquired by using the organic semiconductor quinacridone as an example system. The model reveals the vital role of the ζ potential and includes Casimir-like fluctuation-induced forces and the effect of dewetting in hydrophobic nanoconfinements. Based on our results, the OSWD of insoluble organic molecules can hence be applied to environmental friendly and low-cost dispersing agents, such as water. In addition, the model substantially enhances the ability to control the OSWD in terms of adsorbate structure and substrate coverage

    Interparticle and Brownian forces controlling particle aggregation and rheology of silicate melts containing platinum-group element particles

    Get PDF
    We study the rheology of silicate melts containing platinum-group element (PGE) particles. They exhibit a shear-thinning behaviour, an intense aggregation tendency, and an anomalously high apparent viscosity in the low shear rate limit, even at very low particle volume fraction. Using a compilation of published experimental data, we analyse these effects in three steps. Firstly, we observe that the viscosities of these suspensions are much higher than those of natural silicate crystal-bearing melts for low shear rate regimes. Secondly, we demonstrate that the viscosities at low shear rate limit cannot be estimated by classical rheological models but rather may be understood as the result of particle aggregation, trapping dead fluid, and thereby increasing the effective particle volume fraction. Finally, we scale the critical shear rates for shear-thinning using a Peclet number analysis—invoking a competition between random thermal particle motion and hydrodynamic shearing motion—and, using an empirical extension, we additionally account for the particle–particle interaction energetics. We propose a framework in which the rheology of this family of particle-bearing melts can be predicted, and demonstrate that at low Peclet numbers, PGE-bearing particle aggregation is driven by interparticle forces and Brownian motion
    corecore