124 research outputs found

    Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild

    Get PDF
    Domesticated Atlantic salmon grow much faster than wild salmon when reared together in fish tanks under farming conditions (size ratios typically 1:2–3). In contrast, domesticated salmon only display marginally higher growth than wild salmon when reared together in rivers (size ratios typically 1:1–1.2). This begs the question why? Is this a difference in the plastic response driven by divergent energy budgets between the two environments, or is it a result of selection, whereby domesticated salmon that display the greatest growth-potential are those at greatest risk of mortality in the wild? We reared domesticated, hybrid and wild salmon in a river until they smoltified at age 2 or 4, and thereafter in fish tanks for a further 2 years. In the river, there was no difference in the mean size between the groups. In contrast, after being transferred from the river to fish tanks, the domesticated salmon significantly outgrew the wild salmon (maximum size ratio of ~1:1.8). This demonstrates that selection alone cannot be responsible for the lack of growth differences observed between domesticated and wild salmon in rivers. Nevertheless, the final size ratios observed after rearing in tanks were lower than expected in that environment, thus suggesting that plasticity, as for selection, cannot be the sole mechanism. We therefore conclude that a combination of energy-budget plasticity, and selection via growth-potential mortality, cause the differences in growth reaction norms between domesticated and wild salmon across these contrasting environments. Our results imply that if phenotypic changes are not observed in wild populations following introgression of domesticated conspecifics, it does not mean that functional genetic changes have not occurred in the admixed population. Clearly, under the right environmental conditions, the underlying genetic changes will manifest themselves in the phenotype.publishedVersio

    Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations

    Get PDF
    Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies.publishedVersio

    Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs

    Get PDF
    Background Many native Atlantic salmon populations have been invaded by domesticated escapees for three decades or longer. However, thus far, the cumulative level of gene-flow that has occurred from farmed to wild salmon has not been reported for any native Atlantic salmon population. The aim of the present study was to investigate temporal genetic stability in native populations, and, quantify gene-flow from farmed salmon that caused genetic changes where they were observed. This was achieved by genotyping historical and contemporary samples from 20 populations covering all of Norway with recently identified single nucleotide polymorphism markers that are collectively diagnostic for farmed and wild salmon. These analyses were combined with analysis of farmed salmon and implementation of Approximate Bayesian computation based simulations. Results Five of the populations displayed statistically significant temporal genetic changes. All five of these populations became more similar to a pool of farmed fish with time, strongly suggesting introgression of farmed fish as the primary cause. The remaining 15 populations displayed weak or non-significant temporal genetic changes. Estimated introgression of farmed fish ranged from 2-47% per population using approximate Bayesian computation. Thus, some populations exhibited high degrees of farmed salmon introgression while others were more or less unaffected. The observed frequency of escapees in each population was moderately correlated with estimated introgression per population R2 = 0.47 P < 0.001. Genetic isolation by distance existed within the historical and contemporary data sets, however, the among-population level of divergence decreased with time. Conclusions This is the first study to quantify cumulative introgression of farmed salmon in any native Atlantic salmon population. The estimations demonstrate that the level of introgression has been population-specific, and that the level of introgression is not solely predicted by the frequency of escapees observed in the population. However, some populations have been strongly admixed with farmed salmon, and these data provide policy makers with unique information to address this situation

    Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild

    Get PDF
    -Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection

    Introgression of domesticated salmon changes life history and phenology of a wild salmon population

    Get PDF
    The release of domesticated conspecifics into the natural environment, whether deliberate or accidental, has the potential to alter the genetic integrity and evolutionary trajectory of wild populations. This widespread challenge is of particular concern for wild Atlantic salmon. By investigating phenotypic differences between the offspring of domesticated, hybrid, and wild Atlantic salmon released into the natural environment, earlier studies have documented the short-term consequences of introgression from domesticated fish into wild salmon populations. However, few studies have investigated the joined product of introgression and natural selection after several generations. Here, we investigated the phenotypic response of an Atlantic salmon population that has been subjected to an average of 24% genetic admixture by domesticated conspecifics escaping from fish farms over three decades (approximately 6–7 generations). Individual levels of admixture were positively correlated with increased size at the smolt and adult stages for both sexes, a decrease in the age of male smolts, and a decrease in the age at maturity for males. These life history changes are presumably the consequence of the well-documented directional selection for increased growth in domesticated salmon and are likely maladaptive. However, the most novel result of this study is that admixture was positively linked with delayed date of return to the river, with highly admixed fish arriving up to 26 days later than nonadmixed fish. Potentially, this phenological change provides admixed individuals with a survival advantage in the later phase of the life cycle as it reduces their period of exposure to selection through rod and line angling. We, therefore, conclude that while gene flow from domesticated conspecifics changes life history and phenological traits of wild Atlantic salmon populations, most of which are likely to be maladaptive, when pressured by additional anthropogenic challenges, some changes may confer a fitness advantage for a short part of the life cycle.publishedVersio

    Losing the 'arms race': Multiresistant salmon lice are dispersed throughout the North Atlantic Ocean

    Get PDF
    Nothing lasts forever, including the effect of chemicals aimed to control pests in food production. As old pesticides have been compromised by emerging resistance, new ones have been introduced and turned the odds back in our favour. With time, however, some pests have developed multi-pesticide resistance, challenging our ability to control them. In salmonid aquaculture, the ectoparasitic salmon louse has developed resistance to most of the available delousing compounds. The discovery of genetic markers associated with resistance to organophosphates and pyrethroids made it possible for us to investigate simultaneous resistance to both compounds in approximately 2000 samples of salmon lice from throughout the North Atlantic in the years 2000–2016. We observed widespread and increasing multiresistance on the European side of the Atlantic, particularly in areas with intensive aquaculture. Multiresistant lice were also found on wild Atlantic salmon and sea trout, and also on farmed salmonid hosts in areas where delousing chemicals have not been used. In areas with intensive aquaculture, there are almost no lice left that are sensitive to both compounds. These results demonstrate the speed to which this parasite can develop widespread multiresistance, illustrating why the aquaculture industry has repeatedly lost the arms race with this highly problematic parasite.publishedVersio

    Aquaculture-driven evolution: distribution of pyrethroid resistance in the salmon louse throughout the North Atlantic in the years 2000–2017

    Get PDF
    The parasitic salmon louse, and its documented resistance to chemotherapeutants, represents the most persistent environmental challenge to global salmonid aquaculture. We used a genetic marker associated with pyrethroid resistance to analyse ∼15 000 lice collected from the North Atlantic in the period 2000–2017. The genotype associated with resistance was not detected in lice collected from throughout the North Atlantic in the year 2000 or 2002. However, by the year 2009 onwards, it was found in lice from fish farms throughout much of the North Atlantic. It was also found in modest frequencies in lice collected from wild Atlantic salmon captured off Greenland. The most recent samples displayed very high frequencies of the genotype associated with resistance, particularly in intensive aquaculture regions of Norway (>90%) and Scotland (>70%). These results closely align with observations from the field. We suggest that pyrethroid resistance first emerged in Europe just before or around the year 2000 and was thereafter dispersed throughout much of the North Atlantic where its increased frequency was driven by extensive pyrethroid use. Although the resistant genotype was not detected in lice from Canada, it is likely to occur in very low frequencies that would quickly increase if pyrethroids were to be used in that region.publishedVersio

    Genetic study reveals local differentiation persisting in the face of high connectivity and a genomic inversion likely linked with sexual antagonism in a common marine fish

    Get PDF
    Sustainable harvest of wild populations requires knowledge of the underlying population structure. The focus of this study is on goldsinny wrasse (Ctenolabrus rupestris), a small marine fish inhabiting coastal waters of the north-eastern Atlantic. This species is caught in large numbers to serve as cleaner fish in salmonid aquaculture. We genotyped 2073 goldsinny wrasse from 43 sites along the Scandinavian coastline with 143 SNPs. Seven of the SNPs were linked and likely reside within a large genomic inversion dominated by one haplotype. The heterokaryotype of the putative inversion displayed sex-specific growth patterns, potentially resolving sexual antagonism for this trait. The unlinked 134 SNPs showed modest isolation-by-distance with samples from the northernmost locations showing highest divergence, whereas sites farther south were much more interconnected. Genetic divergence (FST) was highly variable among sites within regions, suggesting a varying degree of connectivity and local divergence. We conclude that despite a high degree of gene-flow mediated through pelagic dispersal in early life stages, regional and some local population structure remains due to limited adult movement in addition to other unidentified factors. Consequently, the species might be more vulnerable to local disturbances than previously anticipated.publishedVersio

    “A cleaner break”: Genetic divergence between geographic groups and sympatric phenotypes revealed in ballan wrasse (Labrus bergylta)

    Get PDF
    Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.publishedVersio

    Genetic response to human-induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway

    Get PDF
    Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant FST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (FST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.publishedVersio
    corecore