9 research outputs found

    Non BPS noncommutative vortices

    Get PDF
    We construct exact vortex solutions to the equations of motion of the Abelian Higgs model defined in non commutative space, analyzing in detail the properties of these solutions beyond the BPS point. We show that our solutions behave as smooth deformations of vortices in ordinary space time except for parity symmetry breaking effects induced by the non commutative parameter θ\theta.Comment: 17 pages, 5 figure

    Noncommutative U(1) Instantons in Eight Dimensional Yang-Mills Theory

    Get PDF
    We study the noncommutative version of the extended ADHM construction in the eight dimensional U(1) Yang-Mills theory. This construction gives rise to the solutions of the BPS equations in the Yang-Mills theory, and these solutions preserve at least 3/16 of supersymmetries. In a wide subspace of the extended ADHM data, we show that the integer kk which appears in the extended ADHM construction should be interpreted as the D4D4-brane charge rather than the D0D0-brane charge by explicitly calculating the topological charges in the case that the noncommutativity parameter is anti-self-dual. We also find the relationship with the solution generating technique and show that the integer kk can be interpreted as the charge of the D0D0-brane bound to the D8D8-brane with the BB-field in the case that the noncommutativity parameter is self-dual.Comment: 22 page

    Noncommutative Vortices and Instantons from Generalized Bose Operators

    Full text link
    Generalized Bose operators correspond to reducible representations of the harmonic oscillator algebra. We demonstrate their relevance in the construction of topologically non-trivial solutions in noncommutative gauge theories, focusing our attention to flux tubes, vortices, and instantons. Our method provides a simple new relation between the topological charge and the number of times the basic irreducible representation occurs in the reducible representation underlying the generalized Bose operator. When used in conjunction with the noncommutative ADHM construction, we find that these new instantons are in general not unitarily equivalent to the ones currently known in literature.Comment: 25 page

    Noncommutative Burgers Equation

    Get PDF
    We present a noncommutative version of the Burgers equation which possesses the Lax representation and discuss the integrability in detail. We find a noncommutative version of the Cole-Hopf transformation and succeed in the linearization of it. The linearized equation is the (noncommutative) diffusion equation and exactly solved. We also discuss the properties of some exact solutions. The result shows that the noncommutative Burgers equation is completely integrable even though it contains infinite number of time derivatives. Furthermore, we derive the noncommutative Burgers equation from the noncommutative (anti-)self-dual Yang-Mills equation by reduction, which is an evidence for the noncommutative Ward conjecture. Finally, we present a noncommutative version of the Burgers hierarchy by both the Lax-pair generating technique and the Sato's approach.Comment: 24 pages, LaTeX, 1 figure; v2: discussions on Ward conjecture, Sato theory and the integrability added, references added, version to appear in J. Phys.

    A study of triple gauge boson couplings in W-pair production at the linear collider using transversely polarized beams

    No full text
    The sensitivity of the future Linear Collider for measuring triple gauge couplings in WW-pair production using transversely polarized beams is studied. The results are compared with the case of longitudinally polarized beams, showing the advantage of longitudinal polarization over transverse polarization. Also the sensitivity to contri- butions coming from longitudinal W bosons are studied by considering the azimuthal distribution asymmetry present in the case of transversely polarized beams

    The role of polarized positrons and electrons in revealing fundamental interactions at the Linear Collider

    No full text
    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization
    corecore