15 research outputs found

    Solar Neutrino Physics: historical evolution, present status and perspectives

    Full text link
    Solar neutrino physics is an exciting and difficult field of research for physicists, where astrophysics, elementary particle and nuclear physics meet. \ The Sun produces the energy that life has been using on Earth for many years, about 10910^9 y, emits a lot of particles: protons, electrons, ions, electromagnetic quanta... among them neutrinos play an important role allowing to us to check our knowledge on solar characteristics. The main aim of this paper is to offer a practical overview of various aspects concerning the solar neutrino physics: after a short historical excursus, the different detection techniques and present experimental results and problems are analysed. Moreover, the status of art of solar modeling, possible solutions to the so called solar neutrino problem (SNP) and planned detectors are reviewed.Comment: 139 pages, 42 figure

    XBT, ARGO Float and Ship-Based CTD Profiles Intercompared under Strict Space-Time Conditions in the Mediterranean Sea: Assessment of Metrological Comparability

    Get PDF
    open5noAccurate measurement of temperature and salinity is a fundamental task with heavy implications in all the possible applications of the currently available datasets, for example, in the study of climate changes and modeling of ocean dynamics. In this work, the reliability of measurements obtained by oceanographic devices (eXpendable BathyThermographs, Argo floats and Conductivity-Temperature-Depth sensors) is analyzed by means of an intercomparison exercise. As a first step, temperature profiles from XBT probes, deployed by commercial ships crossing the Ligurian and Tyrrhenian seas during the Ship of Opportunity Program (SOOP), were matched with profiles from Argo floats quasi-collocated in space and time. Attention was then paid to temperature/salinity profiling Argo floats. Since Argo floats usually are not recovered and should last up to five years without any re-calibration, their onboard sensors may suer some drift and/or oset. In the literature, refined methods were developed to post-process Argo data, in order to correct the response of their profiling CTD sensors, in particular adjusting the salinity drift. The core of this delayed-mode quality control is the comparison of Argo data with reference climatology. At the same time, the experimental comparison of Argo profiles with ship-based CTD profiles, matched in space and time, is still of great importance. Therefore, an overall comparison of Argo floats vs. shipboard CTDs was performed, in terms of temperature and salinity profiles in the whole Mediterranean Sea, under space-time matching conditions as strict as possible. Performed analyses provided interesting results. XBT profiles confirmed that below 100mdepth the accordance with Argo data is reasonably good, with a small positive bias (close to 0.05 °C) and a standard deviation equal to about 0.10 °C. Similarly, side-by-side comparisons vs. CTD profiles confirmed the good quality of Argo measurements; the evidence of a drift in time was found, but at a level of about E-05 unit/day, so being reasonably negligible on the Argo time-scale. XBT, Argo and CTD users are therefore encouraged to take into account these results as a good indicator of the uncertainties associated with such devices in the Mediterranean Sea, for the analyzed period, in all the climatological applications.openBordone, Andrea; Pennecchi, Francesca; Raiteri, Giancarlo; Repetti, Luca; Reseghetti, FrancoBordone, Andrea; Pennecchi, Francesca; Raiteri, Giancarlo; Repetti, Luca; Reseghetti, Franc

    Assessment of Quality and Reliability of Measurements with XBT Sippican T5 and T5/20

    Get PDF
    AbstractThe T5 expendable bathythermographs reach the greatest depth within the current XBT family. Since the early 1970s, in several areas they have been providing a significant part of available temperature profiles below 1000 m and therefore represent an important resource for ocean climate study. In this paper we present new results from laboratory tests of Sippican T5 and T5/20 probes and analyses of more than 350 XBT–CTD matched pairs from our own field trials and the World Ocean Database (WOD), and we propose an improved fall rate equation (coefficients: A = 6.720 ± 0.025 m s−1, B = 0.001 60 ± 0.000 15 m s−2, Offset = 1.00 ± 0.65 m). Possible influences of probe physical characteristics and initial launch conditions on the probe motion have also been investigated with launching height and probe weight being identified as important factors. Analyses also confirm that fall speed and pure temperature error increase with water temperature, as previously reported for other XBT types. The uncertainties in depth and temperature measurements are then calculated. Finally, a new correction for a global T5 dataset is proposed, with an update of the currently available schemes

    International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification

    Get PDF
    Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD

    XBT Science: Assessment of Instrumental Biases and Errors

    Get PDF
    Expendable bathythermograph (XBT) data were the major component of the ocean temperature profile observations from the late 1960s through the early 2000s, and XBTs still continue to provide critical data to monitor surface and subsurface currents, meridional heat transport, and ocean heat content. Systematic errors have been identified in the XBT data, some of which originate from computing the depth in the profile using a theoretically and experimentally derived fall-rate equation (FRE). After in-depth studies of these biases and discussions held in several workshops dedicated to discussing XBT biases, the XBT science community met at the Fourth XBT Science Workshop and concluded that XBT biases consist of 1) errors in depth values due to the inadequacy of the probe motion description done by standard FRE and 2) independent pure temperature biases. The depth error and temperature bias are temperature dependent and may depend on the data acquisition and recording system. In addition, the depth bias also includes an offset term. Some biases affecting the XBT-derived temperature profiles vary with manufacturer/probe type and have been shown to be time dependent. Best practices for historical XBT data corrections, recommendations for future collection of metadata to accompany XBT data, impact of XBT biases on scientific applications, and challenges encountered are presented in this manuscript. Analysis of XBT data shows that, despite the existence of these biases, historical XBT data without bias corrections are still suitable for many scientific applications, and that bias-corrected data can be used for climate research

    More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future

    Get PDF
    The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network

    Recent advances in neutrinoless double beta decay search

    Full text link
    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay (0Μ0\nu-DBD) experimental discovery could be the ultimate answer to some delicate questions of elementary particle and nuclear physics. The Majorana description of neutrinos allows the 0Μ0\nu-DBD process, and consequently either a mass value could be measured or the existence of physics beyond the standard should be confirmed without any doubt. As expected, the 0Μ0\nu-DBD measurement is a very difficult field of application for experimentalists. In this paper, after a short summary of the latest results in neutrino physics, the experimental status, the R&D projects, and perspectives in 0Μ0\nu-DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic

    Neutrino : la particella fantasma

    No full text
    Il libro propone un viaggio alla scoperta del neutrino, presentando inizialmente il quadro storico in cui sono avvenute la nascita e l'individuazione delle sue principali propriet\ue0. In base alla classificazione corrente usata in fisica, \ue8 una particella elementare, costituente fondamentale della materia, prodotta in moltissimi processi che avvengono in natura ma capace di sfuggire ai tentativi di identificazione per le sue caratteristiche alquanto particolari, fra le quali l'assenza di carica elettrica. Per questo motivo ha assunto i connotati di un vero e proprio fantasma la cui esistenza fu confermata sperimentalmente solo nel 1956
    corecore