29,601 research outputs found
Recommended from our members
A quantum theoretical explanation for probability judgment errors
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction, disjunction, inverse, and conditional fallacies, as well as unpacking effects and partitioning effects. Quantum probability theory is a general and coherent theory based on a set of (von Neumann) axioms which relax some of the constraints underlying classic (Kolmogorov) probability theory. The quantum model is compared and contrasted with other competing explanations for these judgment errors including the representativeness heuristic, the averaging model, and a memory retrieval model for probability judgments. The quantum model also provides ways to extend Bayesian, fuzzy set, and fuzzy trace theories. We conclude that quantum information processing principles provide a viable and promising new way to understand human judgment and reasoning
Simple Non-Markovian Microscopic Models for the Depolarizing Channel of a Single Qubit
The archetypal one-qubit noisy channels ---depolarizing, phase-damping and
amplitude-damping channels--- describe both Markovian and non-Markovian
evolution. Simple microscopic models for the depolarizing channel, both
classical and quantum, are considered. Microscopic models which describe phase
damping and amplitude damping channels are briefly reviewed.Comment: 13 pages, 2 figures. Title corrected. Paper rewritten. Added
references. Some typos and errors corrected. Author adde
IUE observations of blue halo high luminosity stars
Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines
Heavy-heavy form factors and generalized factorization
We reanalyze B -> D pi and B -> K J/psi data to extract a set of parameters
which give the relevant hadronic matrix elements in terms of factorized
amplitudes. Various sources of theoretical uncertainties are studied, in
particular those depending on the model adopted for the form factors. We find
that the fit to the B -> D pi branching ratios substantially depends on the
model describing the Isgur-Wise function and on the value of its slope. This
dependence can be reduced by substituting the BR(B -> D pi) with suitable
ratios of non-leptonic to differential semileptonic BRs. In this way, we obtain
a model-independent determination of these parameters. Using these results, the
B -> D form factors at q^2=M_pi^2 can be extracted from a fit of the BR(B -> D
pi). The comparison between the form factors obtained in this way and the
corresponding measurements in semileptonic decays can be used as a test of
(generalized) factorization free from the uncertainties due to heavy-heavy form
factor modeling. Finally, we present predictions for yet-unmeasured D pi and D
K branching ratios and extract f_{D_s} and f_{D_s^*} from B -> DD_s decays. We
find f_{D_s} = 270 +- 45 MeV and f_{D_s^*}=260 +- 40 MeV, in good agreement
with recent measurements and lattice calculations.Comment: 20 pages, 16 ps/eps files, uses epsfig.sty; exp. numbers update
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
N=1 Super QCD and Fractional Branes
We show how to get the one-loop beta function and the chiral anomaly of N=1
Super QCD from a stack of fractional N D3-branes localized inside the
world-volume of 2M fractional D7-branes on the orbifold C^3/(Z_2 x Z_2). They
are obtained by analyzing the classical supergravity background generated by
such a brane configuration, in the spirit of the gauge/gravity correspondence.Comment: 4 pages, LaTeX. Talk given at the IXth International Symposium on
Particles, Strings and Cosmology PASCOS '03, Mumbai-India, January 3-8 2003.
To appear in a special issue of Praman
A portable Ku-band front-end test package for beam-waveguide antenna performance evaluation
A 34-m beam-waveguide (BWG) antenna has been built a Deep Space Station 13 (DDS 13) in the Goldstone Deep Space Communications Complex. This antenna is designed to be efficient at X-, Ku-, and Ka-bands, and it is the first NASA tracking antenna to use a BWG design. The design of a Ku-band test package for the new BWG antenna at 11.7-12.2 GHz is presented. Results of linear polarization measurements with the test package on the ground are also presented. This report is the fifth in a series of articles concerned with test package design and performance
- …