158 research outputs found

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Low loss coatings for the VIRGO large mirrors

    Get PDF
    présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.876.87^\circ in diameter and centered on 20h10m54.71s+333325.29"20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29", and the other (B) is 7.457.45^\circ in diameter and centered on 8h35m20.61s464925.151"8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151". We explored the frequency range of 50-1500 Hz and frequency derivative from 00 to 5×109-5\times 10^{-9} Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169169 Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude h0h_0 of 6.3×10256.3\times 10^{-25}, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10243.4\times 10^{-24} for all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    Get PDF
    This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.Comment: 29 pages, 14 figures, 6 tables. Science summary page at http://www.ligo.org/science/Publication-FullS5EatH/index.php ; Public access area to figures and tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120002
    corecore