128 research outputs found

    Laser interstitial thermal therapy is effective and safe for the treatment of brain tumors in NF1 patients after cerebral revascularization for moyamoya angiopathy: a report on two cases

    Get PDF
    BackgroundThe co-occurrence of moyamoya vasculopathy and extra-optic pathway tumors is rare in neurofibromatosis type 1 (NF1), with only four cases described in the literature. Brain surgery in these patients may be challenging because of the risk of brain infarction after skin and dural incision. Given its percutaneous and minimally invasive nature, laser interstitial thermal therapy (LITT) is an ideal option for the treatment of brain tumors in these patients. Here, we report on two patients with NF1 and moyamoya syndrome (MMS) treated for a brain glioma with LITT, after cerebral revascularization.CasesThe first patient, with familial NF1, underwent bilateral indirect revascularization with multiple burr holes (MBH) for symptomatic MMS. Two years later, she was diagnosed with a left temporal tumor, with evidence of radiologic progression over 10 months. The second patient, also with familial NF1, developed unilateral MMS when he was 6 years old and was treated with MBH. At the age of 15 years, MRI showed a right cingular lesion, growing on serial MRIs. Both patients underwent LITT with no perioperative complications; they are progression free at 10 and 12 months, respectively, and the tumors have decreased in volume.DiscussionWhile the association of extra-optic neoplasm and moyamoya angiopathy is seldom reported in NF1, tumor treatment is challenging in terms of both avoiding stroke and achieving oncological control. Here, we show in 2 cases, that LITT could be a safe and effective option in these rare conditions

    Constitutional mismatch repair deficiency–associated brain tumors: report from the European C4CMMRD consortium

    Get PDF
    Abstract Background Malignant brain tumors (BT) are among the cancers most frequently associated with constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer predisposition syndrome resulting from biallelic germline mutations in mismatch repair genes. This study analyzed data from the European "Care for CMMRD" (C4CMMRD) database to describe their clinical characteristics, treatments, and outcome with the aim of improving its diagnosis/treatment. Methods Retrospective analysis of data on patients with CMMRD and malignant BT from the C4CMMRD database up to July 2017. Results Among the 87 registered patients, 49 developed 56 malignant BTs: 50 high-grade gliomas (HGG) (with giant multinucleated cells in 16/21 histologically reviewed tumors) and 6 embryonal tumors. The median age at first BT was 9.2 years [1.1–40.6], with nine patients older than 18. Twenty-seven patients developed multiple malignancies (including16 before the BT). Most patients received standard treatment, and eight patients immunotherapy for relapsed HGG. The 3- and 5-year overall survival (OS) rates were 30% (95% CI: 19–45) and 22% (95% CI: 12–37) after the first BT, with worse prognosis for HGG (3-year OS = 20.5%). Six patients were alive (median follow-up 2.5 years) and 43 dead (38 deaths, 88%, were BT-related). Other CMMRD-specific features were cafĂ©-au-lait macules (40/41), multiple BTs (5/15), developmental brain anomalies (11/15), and consanguinity (20/38 families). Conclusions Several characteristics could help suspecting CMMRD in pediatric malignant BTs: giant cells on histology, previous malignancies, parental consanguinity, cafĂ©-au-lait macules, multiple BTs, and developmental brain anomalies. The prognosis of CMMRD-associated BT treated with standard therapies is poor requiring new therapeutic up-front approaches

    High-Throughput Drug Screening Identifies Pazopanib and Clofilium Tosylate as Promising Treatments for Malignant Rhabdoid Tumors

    Get PDF
    Summary: Rhabdoid tumors (RTs) are aggressive tumors of early childhood characterized by SMARCB1 inactivation. Their poor prognosis highlights an urgent need to develop new therapies. Here, we performed a high-throughput screening of approved drugs and identified broad inhibitors of tyrosine kinase receptors (RTKs), including pazopanib, and the potassium channel inhibitor clofilium tosylate (CfT), as SMARCB1-dependent candidates. Pazopanib targets were identified as PDGFRα/ÎČ and FGFR2, which were the most highly expressed RTKs in a set of primary tumors. Combined genetic inhibition of both these RTKs only partially recapitulated the effect of pazopanib, emphasizing the requirement for broad inhibition. CfT perturbed protein metabolism and endoplasmic reticulum stress and, in combination with pazopanib, induced apoptosis of RT cells in vitro. In vivo, reduction of tumor growth by pazopanib was enhanced in combination with CfT, matching the efficiency of conventional chemotherapy. These results strongly support testing pazopanib/CfT combination therapy in future clinical trials for RTs. : Rhabdoid tumors (RTs) are aggressive pediatric tumors characterized by SMARCB1 inactivation. Chauvin et al. identify two SMARCB1-dependent targeted therapies for RT: pazopanib, which inhibits PDGFR and FGFR2, and the potassium channel inhibitor clofilium tosylate, which induces endoplasmic reticulum stress. Combining both drugs induces cell apoptosis and reduces PDX tumor growth. Keywords: rhabdoid tumors, SMARCB1, pazopanib, clofilium tosylate, high-throughput drug screening, tyrosine kinase inhibitor

    The role of cancer predisposition syndrome in children and adolescents with very rare tumours

    Get PDF
    Germline predisposing pathogenic variants (GPVs) are present in approximately 8 to 10% of children with all cancer types. Very rare tumours (VRTs) represent many different diseases, defined with an annual incidence < 2 / 1,000,000, and correspond to 11% of all cancers in patients aged 0-14 years. Some of these VRTs, including cancer typical for adults, develop in children with a cancer predisposition syndrome (CPS). Classically, three situations lead to consider this association: Some patients develop a VRT for which histology itself strongly suggests a GPV related to a CPS; others are referred for germline genetic testing because of a family or personal history and finally, a systematic molecular genomic tumour analysis, reveals a PV typical to a CPS. Depending on the samples tested and type of analysis performed, information can be directly available about the germline status of such a PV. Depicting the association between CPS and VRT is clinically important as some of these tumour types require adapted therapy, sometimes in the frontline setting, and the proposal of a specific surveillance programme to detect other malignancies. The diagnosis of CPS necessitates a careful familial evaluation and genetic counselling regarding the risks faced by the child or other family members. The aim of this paper is to propose a literature review of solid VRTs occurring in paediatric and young adult patients associated with CPSs

    Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases

    Get PDF
    Atypical teratoid/rhabdoid tumors (ATRTs) are very aggressive childhood malignancies of the central nervous system. The underlying genetic cause are inactivating bi-allelic mutations in SMARCB1 or (rarely) in SMARCA4. ATRT-SMARCA4 have been associated with a higher frequency of germline mutations, younger age, and an inferior prognosis in comparison to SMARCB1 mutated cases. Based on their DNA methylation profiles and transcriptomics, SMARCB1 mutated ATRTs have been divided into three distinct molecular subgroups: ATRT-TYR, ATRT-SHH, and ATRT-MYC. These subgroups differ in terms of age at diagnosis, tumor location, type of SMARCB1 alterations, and overall survival. ATRT-SMARCA4 are, however, less well understood, and it remains unknown, whether they belong to one of the described ATRT subgroups. Here, we examined 14 ATRT-SMARCA4 by global DNA methylation analyses. We show that they form a separate group segregating from SMARCB1 mutated ATRTs and from other SMARCA4-deficient tumors like small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) or SMARCA4 mutated extra-cranial malignant rhabdoid tumors. In contrast, medulloblastoma (MB) samples with heterozygous SMARCA4 mutations do not group separately, but with established MB subgroups. RNA sequencing of ATRT-SMARCA4 confirmed the clustering results based on DNA methylation profiling and displayed an absence of typical signature genes upregulated in SMARCB1 deleted ATRT. In summary, our results suggest that, in line with previous clinical observations, ATRT-SMARCA4 should be regarded as a distinct molecular subgroup

    SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance

    Get PDF
    Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells

    EMBR-25. Genome-wide genetic and epigenetic assessment of group 4 Medulloblastoma for improved, biomarker driven, prognostication and risk-stratification

    Get PDF
    Introduction: Medulloblastoma (MB) is the most common malignant brain tumour in children. The most frequent molecular subgroup, Group 4 (MBGrp4) accounts for ~35/40% of cases, however it has the least understood underlying biology. Clinical outcomes are heterogeneous in MBGrp4 and are not accounted for by established clinico-pathological risk factors. There is now a requirement for a comprehensive study of MBGrp4, considering established clinico-pathological features and novel molecular biomarkers to enhance risk-stratification and identify novel therapeutic targets. Methods: A clinically-annotated, retrospective MBGrp4 discovery cohort (n = 420) was generated from UK CCLG institutions, collaborating European centres and SIOP-UKCCSG-PNET3 and HIT-SIOP-PNET4 clinical trials. Contemporary, multi-omics profiling was performed. Focal and arm level copy number aberrations (CNAs) were determined from molecular inversion probe (MIP) or DNA methylation array which additionally provided next generation non-WNT/non-SHH (Grp3/Grp4) subtype classifications. Targeted next-generation DNA sequencing was performed to overlay the mutational landscape. Survival modelling was carried out with patients &gt;3 years old who received craniospinal irradiation. Results: MBGrp4 subtypes were assigned to 88% of tumours with available data. Subtype VIII was strongly associated with i17q (p&lt;0.0001). The favourable-risk cytogenetic signature (2 or 3 of; chromosome 7 gain, chromosome 8 loss and/or chromosome 11 loss) associated with both subtypes VI and VII (p&lt;0.0001). MYCN amplifications were strongly associated with subtype V (p&lt;0.0001) in addition to 16q loss (p&lt;0.0001). The high-risk CNA group was enriched for mutations in genes involved in chromatin remodelling (p&lt;0.0001). Risk factors were identified from multivariate survival modelling. Subtype and CNA groups contributed to improved risk-stratification models that outperformed current clinical schemes. Conclusion: Comprehensive genetic and epigenetic profiling in this large retrospective cohort has improved our understanding of the molecular and clinical heterogeneity within MBGrp4. Incorporation of molecular biomarkers improved risk-stratification for MBGrp4

    Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups

    Get PDF
    Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2^{ERT2}::Smarcb1flox/flox^{flox/flox} model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway

    Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation : a collaborative study of the SIOPE Host Genome Working Group

    Get PDF
    Background Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. Methods To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. Results Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. Conclusion Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.Peer reviewe

    ALK germline mutations in patients with neuroblastoma: a rare and weakly penetrant syndrome

    Get PDF
    Neuroblastic tumours may occur in a predisposition context. Two main genes are involved: PHOX2B, observed in familial cases and frequently associated with other neurocristopathies (Ondine&apos;s and Hirschsprung&apos;s disease); and ALK, mostly in familial tumours. We have assessed the frequency of mutations of these two genes in patients with a presumable higher risk of predisposition. We sequenced both genes in 26 perinatal cases (prebirth and o1 month of age, among which 10 were multifocal), 16 multifocal postnatal (41 month) cases, 3 pairs of affected relatives and 8 patients with multiple malignancies. The whole coding sequences of the two genes were analysed in tumour and/or constitutional DNAs. We found three ALK germline mutations, all in a context of multifocal tumours. Two mutations (T1151R and R1192P) were inherited and shared by several unaffected patients, thus illustrating an incomplete penetrance. Younger age at tumour onset did not seem to offer a relevant selection criterion for ALK analyses. Conversely, multifocal tumours might be the most to benefit from the genetic screening. Finally, no PHOX2B germline mutation was found in this series. In conclusion, ALK deleterious mutations are rare events in patients with a high probability of predisposition. Other predisposing genes remain to be discovered
    • 

    corecore