7 research outputs found

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman

    PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression.

    No full text
    BackgroundProtection of islets without systemic immunosuppression has been a long-sought goal in the islet transplant field. We conducted a pilot biocompatibility/safety study in healthy dogs followed by a dose-finding efficacy study in diabetic dogs using polyethylene glycol diacrylate (PEGDA) microencapsulated allogeneic canine islets.MethodsPrior to the transplants, characterization of the canine islets included the calculations determining the average cell number/islet equivalent. Following measurements of purity, insulin secretion, and insulin, DNA and ATP content, the islets were encapsulated and transplanted interperitoneally into dogs via a catheter, which predominantly attached to the omentum. In the healthy dogs, half of the microspheres injected contained canine islets, the other half of the omentum received empty PEGDA microspheres.ResultsIn the biocompatibility study, healthy dogs received increasing doses of cells up to 1.7 M cells/kg body weight, yet no hypoglycemic events were recorded and the dogs presented with no adverse events. At necropsy the microspheres were identified and described as clear with attachment to the omentum. Several of the blood chemistry values that were abnormal prior to the transplants normalized after the transplant. The same observation was made for the diabetic dogs that received higher doses of canine islets. In all diabetic dogs, the insulin required to attempt to control blood glucose was cut by 50-100% after the transplant, down to no required insulin for the course of the 60-day study. The dogs had no adverse events and behavioral monitoring suggested normal activity after recovery from the transplant.Conclusions and implicationsThe study provides evidence that PEGDA microencapsulated canine islets reversed the signs of diabetes without immunosuppression and led to states of insulin-independence or significantly lowered insulin requirements in the recipients
    corecore