167 research outputs found
Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning
peer reviewedCoffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples
Investigating Bacterial Volatilome for the Classification and Identification of Mycobacterial Species by HS-SPME-GC-MS and Machine Learning.
peer reviewedSpecies of Mycobacteriaceae cause disease in animals and humans, including tuberculosis and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC) or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for each can be different. Although the NTM infection is considered less vital due to the chronicity of the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation among Mycobacterium species currently require culture isolation, which can take several weeks. The use of volatile organic compounds (VOCs) is a promising approach for species identification and in recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture headspace of seven different species of mycobacteria and to define the volatilome profiles that are discriminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME) was employed and samples were subsequently analyzed using gas chromatography-quadrupole mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the 13 discriminatory features, which might represent clinically translatable bacterial biomarkers
Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products.
peer reviewedThis review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques
METHOD DEVELOPMENT AND OPTIMIZATION FOR MONITORING PROBE EXHALED BREATH METABOLITES USING PARALLEL MS-BASED ANALYTICAL PLATFORMS
editorial reviewe
Breath can discriminate tuberculosis from other lower respiratory illness in children
Pediatric tuberculosis (TB) remains a global health crisis. Despite progress, pediatric patients remain difficult to diagnose, with approximately half of all childhood TB patients lacking bacterial confirmation. In this pilot study (n = 31), we identify a 4-compound breathprint and subsequent machine learning model that accurately classifies children with confirmed TB (n = 10) from children with another lower respiratory tract infection (LRTI) (n = 10) with a sensitivity of 80% and specificity of 100% observed across cross validation folds. Importantly, we demonstrate that the breathprint identified an additional nine of eleven patients who had unconfirmed clinical TB and whose symptoms improved while treated for TB. While more work is necessary to validate the utility of using patient breath to diagnose pediatric TB, it shows promise as a triage instrument or paired as part of an aggregate diagnostic scheme
Breath can discriminate tuberculosis from other lower respiratory illness in children.
peer reviewedPediatric tuberculosis (TB) remains a global health crisis. Despite progress, pediatric patients remain difficult to diagnose, with approximately half of all childhood TB patients lacking bacterial confirmation. In this pilot study (n = 31), we identify a 4-compound breathprint and subsequent machine learning model that accurately classifies children with confirmed TB (n = 10) from children with another lower respiratory tract infection (LRTI) (n = 10) with a sensitivity of 80% and specificity of 100% observed across cross validation folds. Importantly, we demonstrate that the breathprint identified an additional nine of eleven patients who had unconfirmed clinical TB and whose symptoms improved while treated for TB. While more work is necessary to validate the utility of using patient breath to diagnose pediatric TB, it shows promise as a triage instrument or paired as part of an aggregate diagnostic scheme
- …