49 research outputs found

    The Role of Integral Gain and its Neuromuscular Implementation in the Flight Control System of Drosophila

    Get PDF
    Small flying insects, such as the fruit fly Drosophila melanogaster, can navigate along a relatively straight path for long distances. During these journeys, they need a long-range navigational strategy to maintain a constant heading over time, as well as stabilizing behaviors to deal with perturbations, such as a sudden gust of wind or a broken wing. In this work, I characterize a behavioral strategy flies use to maintain stable flight using a combination of experimental and control theoretic approaches. I then investigate how this control strategy is implemented in the flight motor system. In Chapter 1, I describe release-and-recapture experiments performed in the Mojave Desert to investigate how flies interact with the wind to travel long distances. These experiments provide key insight into the dispersal behavior of small insects and suggest that these animals employ a single algorithm that is functionally robust in both still air and under windy conditions. In Chapter 2, I present an extensive set of behavioral experiments showing that the optomotor response, a well-described stabilizing flight reflex, can be accurately modelled by a proportional-integral controller. I also show simulations that exemplify the potential functional advantage of this controller model in natural flight conditions. In Chapter 3, I show the results from muscle imaging experiments designed to investigate how the integral gain of a proportional integral controller might be implemented within the flight motor system. Finally, in Chapter 4, I summarize the main findings, and discuss the limitations of this work and future directions.</p

    Genomic Diversity Using Copy Number Variations in Worldwide Chicken Populations

    Get PDF
    Recently, many studies in livestock have focused on the identification of Copy Number Variants (CNVs) using high-density Single Nucleotide Polymorphism (SNP) arrays, but few have focused on studying chicken ecotypes coming from many locations. CNVs are polymorphisms, which may influence phenotype and are an important source of genetic variation in populations. The aim of this study was to explore the genetic difference and structure, using a high density SNP chip in 936 individuals from seven different countries (Brazil, Italy, Egypt, Mexico, Rwanda, Sri Lanka and Uganda). The DNA was genotyped with the Affymetrix Axiom®600k Chicken Genotyping Array and processed with stringent quality controls to obtain 559,201 SNPs in 915 individuals. The Log R Ratio (LRR) and the B Allele Frequency of SNPs were used to perform the CNV calling with PennCNV software based on a Hidden Markov Model analysis and the LRR was used to perform CNV detection with SVS Golden Helix software.After filtering, a total of 19,027 CNVs were detected with the SVS software, while 9,065 CNVs were identified with the Penn CNV software. The CNVs were summarized in 7,001 Copy Number Variant Regions (CNVRs) and 4,414 CNVRs, using the software BedTool.The consensus analysis across the CNVRs allowed the identification of 2,820 consensus CNVR, of which 1,721 were gain, 637 loss and 462 complex, for a total length of 53 Mb corresponding to the 5 % of the GalGal5 chicken autosomes. Only the consensus CNV regions obtained from both detections were considered for further analysis.The intersection analysis performed between the chicken gene database (Gallus_gallus-5.0) and the 1,927 consensus CNVRs allowed the identification (within or partial overlap) of a total of 2,354 unique genes with an official gene ID.  The CNVRs identified here represent the first comprehensive mapping in several worldwide populations, using a high-density SNP chip

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders

    Full text link

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore