21 research outputs found

    Protein Kinase CK2α′ Is Induced by Serum as a Delayed Early Gene and Cooperates with Ha-ras in Fibroblast Transformation

    Get PDF
    Protein kinase CK2 is an ubiquitous and pleiotropic Ser/Thr protein kinase composed of two catalytic (alpha and/or alpha') and two noncatalytic (beta) subunits forming a heterotetrameric holoenzyme involved in cell growth and differentiation. Here we report the identification, cloning, and oncogenic activity of the murine CK2alpha' subunit. Serum treatment of quiescent mouse fibroblasts induces CK2alpha' mRNA expression, which peaks at 4 h. The kinetics of CK2alpha' expression correlate with increased kinase activity toward a specific CK2 holoenzyme peptide substrate. The ectopic expression of CK2alpha' (or CK2alpha) cooperates with Ha-ras in foci formation of rat primary embryo fibroblasts. Moreover, we observed that BALB/c 3T3 fibroblasts transformed with Ha-ras and CK2alpha' show a faster growth rate than cells transformed with Ha-ras alone. In these cells the higher growth rate correlates with an increase in calmodulin phosphorylation, a protein substrate specifically affected by isolated CK2 catalytic subunits but not by CK2 holoenzyme, suggesting that unbalanced expression of a CK2 catalytic subunit synergizes with Ha-ras in cell transformation

    Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose

    Get PDF
    N.R.J. was supported by a Diabetes UK RW and JM Collins Studentship (12/0004601). J.B. was supported by a European Foundation for the Study of Diabetes (EFSD) Albert Renold Young Scientist Fellowship and a Studienstiftung des deutschen Volkes PhD Studentship. D.T. was supported by an Advanced Grant from the European Research Commission (268795). G.A.R. was supported by Wellcome Trust Senior Investigator (WT098424AIA) and Royal Society Wolfson Research Merit Awards, and by MRC Programme (MR/J0003042/1), Biological and Biotechnology Research Council (BB/J015873/1), and Diabetes UK Project (11/0004210) grants. G.A.R. and M.W. acknowledge COST Action TD1304 Zinc-Net. D.J.H. was supported by Diabetes UK R.D. Lawrence (12/0004431), EFSD/Novo Nordisk Rising Star and Birmingham Fellowships, a Wellcome Trust Institutional Support Award, and an MRC Project Grant (MR/N00275X/1) with G.A.R. D.J.H and G.A.R. were supported by Imperial Confidence in Concept (ICiC) Grants. J.F. was supported by an MRC Programme grant (MR/L02036X/1). L.P. provided human islets through collaboration with the Diabetes Research Institute, IRCCS San Raffaele Scientific Institute (Milan), within the European islet distribution program for basic research supported by JDRF (1-RSC-2014-90-I-X). P.M. and M.B. were supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 155005 (IMIDIA), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution, and by the Italian Ministry of University and Research (PRIN 2010-2012). D.B. and E.B. provided human islets through the European Consortium for Islet Transplantation sponsored by JDRF (1-RSC-2014-100-I-X)

    ADCY5 couples glucose to insulin secretion in human islets

    Get PDF
    Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action

    CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances -beta-catenin degradation.

    No full text
    Protein kinase CK2 is a ubiquitous and pleiotropic Ser/Thr protein kinase involved in cell growth and transformation. Here we report the identification by yeast interaction trap of a CK2 interacting protein, UBC3B, which is highly homologous to the E2 ubiquitin conjugating enzyme UBC3/CDC34. UBC3B complements the yeast cdc34-2 cell cycle arrest mutant in S. cerevisiae and transfers ubiquitin to a target substrate in vitro. UBC3B is specifically phosphorylated by CK2 in vitro and in vivo. We mapped by deletions and site directed mutagenesis the phosphorylation site to a serine residue within the C-terminal domain in position 233 of UBC3B and in the corresponding serine residue of UBC3. Following CK2-dependent phosphorylation both UBC3B and UBC3 bind to the F-box protein beta-TrCP, the substrate recognition subunit of an SCF (Skp1, Cul1, F-box) ubiquitin ligase. Furthermore, we observed that co-transfection of CK2alpha' together with UBC3B, but not with UBC3DeltaC, enhances the degradation of beta-catenin. Taken together these data suggest that CK2-dependent phosphorylation of UBC3 and UBC3B functions by regulating beta-TrCP substrate recognition

    Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β cells

    Get PDF
    Pancreatic β cells respond to increases in glucose concentration with enhanced metabolism, the closure of ATP-sensitive K(+) channels and electrical spiking. The latter results in oscillatory Ca(2+) influx through voltage-gated Ca(2+) channels and the activation of insulin release. The relationship between changes in cytosolic and mitochondrial free calcium concentration ([Ca(2+)]cyt and [Ca(2+)]mit, respectively) during these cycles is poorly understood. Importantly, the activation of Ca(2+)-sensitive intramitochondrial dehydrogenases, occurring alongside the stimulation of ATP consumption required for Ca(2+) pumping and other processes, may exert complex effects on cytosolic ATP/ADP ratios and hence insulin secretion. To explore the relationship between these parameters in single primary β cells, we have deployed cytosolic (Fura red, Indo1) or green fluorescent protein-based recombinant-targeted (Pericam, 2mt8RP for mitochondria; D4ER for the ER) probes for Ca(2+) and cytosolic ATP/ADP (Perceval) alongside patch-clamp electrophysiology. We demonstrate that: (1) blockade of mitochondrial Ca(2+) uptake by shRNA-mediated silencing of the uniporter MCU attenuates glucose- and essentially blocks tolbutamide-stimulated, insulin secretion; (2) during electrical stimulation, mitochondria decode cytosolic Ca(2+) oscillation frequency as stable increases in [Ca(2+)]mit and cytosolic ATP/ADP; (3) mitochondrial Ca(2+) uptake rates remained constant between individual spikes, arguing against activity-dependent regulation ("plasticity") and (4) the relationship between [Ca(2+)]cyt and [Ca(2+)]mit is essentially unaffected by changes in endoplasmic reticulum Ca(2+) ([Ca(2+)]ER). Our findings thus highlight new aspects of Ca(2+) signalling in β cells of relevance to the actions of both glucose and sulphonylureas

    Follicular microenvironment: Oxidative stress and adiponectin correlated with steroids hormones in women undergoing in vitro fertilization

    No full text
    Research has been focused on determining the follicular microenviroment produced by the theca and granulosa cells since the molecular characterisation of this body fluid could lead to the understanding of several fertility problems. Oxidative stress may be one of the factors involved in female infertility since it plays a key role in the modulation of oocyte maturation and finally pregnancy. An increase in oxidative stress is correlated with inflammation and intense research was developed to understand the interaction between inflammation and adiponectin, based on the fact that many adipokines are inflammation related proteins linked to reactive oxygen species production. The aim of this study is to investigate the correlation between total adiponectin levels and oxidative stress amount in the serum and follicular fluid (FF) of women who undergone in vitro fertilization. Moreover we verified the expression of adiponectin in granulosa and cumulus cells. To clarify the predictive value of steroid hormones in human assisted reproduction, twelve steroid hormones in FF and serum, were quantified in a single run liquid chromatography/mass spectrometry, by using a multiple reaction monitoring mode and we related the serum and follicular fluids adiponectin levels with the concentration of the investigated steroid hormones
    corecore