65 research outputs found

    A first step towards the understanding of the 5-HT3 receptor subunitheterogeneity from a computational point of view

    Get PDF
    The functional serotonin type-3 receptor (5-HT3-R), which is the target of many neuroactive drugs, isknown to be a homopentamer made of five identical subunits A (5-HT3A-R) or a binary heteropentamermade of subunits A and B (5-HT3A/B-R) with a still debated arrangement and stoichiometry. Thiscomplex picture has been recently further complicated by the discovery of additional 5-HT3-R subunits,C, D, and E, which, similarly to the B subunit, are apparently able to form functional receptors only ifco-expressed with subunit A. Being the binding site for both serotonin and antagonists (i.e. drugs)located at the extracellular interface between two adjacent subunits, the large variability of the 5-HT3-Rcomposition becomes a crucial issue, since it can originate many different interfaces providing nonequivalentligand binding sites and complicating the pharmacological modulation. Here, the different5-HT3-R interfaces are analysed, on the bases of the structural conformations of previously built 3Dhomology models and of the known subunit sequences, by addressing their physicochemicalcharacterization. The results confirm the presence of an aromatic cluster located in the core of the A–Ainterface as a key determinant for having an interface both stable and functional. This is used as adiscriminant to make hypotheses about the capability of all the other possible interfaces constituted bythe known 5-HT3-R sequences A, B, C, D, and E to build active receptors

    Exploring a potential palonosetron allosteric binding site in the 5-HT 3 receptor

    Get PDF
    Palonosetron (Aloxi) is a potent second generation 5-HT3 receptor antagonist whose mechanism of action is not yet fully understood. Palonosetron acts at the 5-HT3 receptor binding site but recent computational studies indicated other possible sites of action in the extracellular domain. To test this hypothesis we mutated a series of residues in the 5-HT3A receptor subunit (Tyr73, Phe130, Ser 163, and Asp165) and in the 5-HT3B receptor subunit (His73, Phe130, Glu170, and Tyr143) that were previously predicted by in silico docking studies to interact with palonosetron. Homomeric (5-HT3A) and heteromeric (5-HT3AB) receptors were then expressed in HEK293 cells to determine the potency of palonosetron using both fluorimetric and radioligand methods to test function and ligand binding, respectively. The data show that the substitutions have little or no effect on palonosetron inhibition of 5-HT-evoked responses or binding. In contrast, substitutions in the orthosteric binding site abolish palonosetron binding. Overall, the data support a binding site for palonosetron at the classic orthosteric binding pocket between two 5-HT3A receptor subunits but not at allosteric sites previously identified by in silico modelling and docking

    Solid state molecular rectifier based on self organized metalloproteins

    Full text link
    Recently, great attention has been paid to the possibility of implementing hybrid electronic devices exploiting the self-assembling properties of single molecules. Impressive progress has been done in this field by using organic molecules and macromolecules. However, the use of biomolecules is of great interest because of their larger size (few nanometers) and of their intrinsic functional properties. Here, we show that electron-transfer proteins, such as the blue copper protein azurin (Az), can be used to fabricate biomolecular electronic devices exploiting their intrinsic redox properties, self assembly capability and surface charge distribution. The device implementation follows a bottom-up approach in which the self assembled protein layer interconnects nanoscale electrodes fabricated by electron beam lithography, and leads to efficient rectifying behavior at room temperature.Comment: 13 pages including two figures. Accepted for publication in Advanced Material

    Azurin for Biomolecular Electronics: a Reliability Study

    Get PDF
    The metalloprotein azurin, used in biomolecular electronics, is investigated with respect to its resilience to high electric fields and ambient conditions, which are crucial reliability issues. Concerning the effect of electric fields, two models of different complexity agree indicating an unexpectedly high robustness. Experiments in device-like conditions confirm that no structural modifications occur, according to fluorescence spectra, even after a 40-min exposure to tens of MV/m. Ageing is then investigated experimentally, at ambient conditions and without field, over several days. Only a small conformational rearrangement is observed in the first tens of hours, followed by an equilibrium state

    Efficacy and safety of growth hormone treatment in children with short stature: the Italian cohort of the GeNeSIS clinical study

    Get PDF
    Purpose: We examined auxological changes in growth hormone (GH)-treated children in Italy using data from the Italian cohort of the multinational observational Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS) of pediatric patients requiring GH treatment. Methods: We studied 711 children (median baseline age 9.6 years). Diagnosis associated with short stature was as determined by the investigator. Height standard deviation score (SDS) was evaluated yearly until final or near-final height (n = 78). Adverse events were assessed in all GH-treated patients. Results: The diagnosis resulting in GH treatment was GH deficiency (GHD) in 85.5 % of patients, followed by Turner syndrome (TS 6.6 %). Median starting GH dose was higher in patients with TS (0.30 mg/kg/week) than patients with GHD (0.23 mg/kg/week). Median (interquartile range) GH treatment duration was 2.6 (0.6\u20133.7) years. Mean (95 % confidence interval) final height SDS gain was 2.00 (1.27\u20132.73) for patients with organic GHD (n = 18) and 1.19 (0.97\u20131.40) for patients with idiopathic GHD (n = 41), but lower for patients with TS, 0.37 ( 120.03 to 0.77, n = 13). Final height SDS was > 122 for 94 % of organic GHD, 88 % of idiopathic GHD and 62 % of TS patients. Mean age at GH start was lower for organic GHD patients, and treatment duration was longer than for other groups, resulting in greater mean final height gain. GH-related adverse events occurred mainly in patients diagnosed with idiopathic GHD. Conclusions: Data from the Italian cohort of GeNeSIS showed auxological changes and safety of GH therapy consistent with results from international surveillance databases

    Multiple Advantageous Amino Acid Variants in the NAT2 Gene in Human Populations

    Get PDF
    Background: Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation. Methodology/Principal Findings: The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima's D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence. Conclusions/Significance: Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity. © 2008 Luca et al

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Theoretical investigation of substrate specificity for cytochromes p450 IA2, p450 IID6 and p450 IIIA4

    No full text
    Three-dimensional models of the cytochromes P450 IA2, P450 IID6 and P450 IIIA4 were built by means of comparative modeling using the X-ray crystallographic structures of P450 CAM, P450 BM-3, P450 TERP and P450 ERYF as templates. The three cytochromes were analyzed both in their intrinsic structural features and in their interaction properties with fifty specific and non-specific substrates. Substrate/enzyme complexes were obtained by means of both automated rigid and flexible body docking. The comparative analysis of the three cytochromes and the selected substrates, in their free and bound forms, allowed for the building of semi-quantitative models of substrate specificity based on both molecular and intermolecular interaction descriptors. The results of this study provide new insights into the molecular determinants of substrate specificity for the three different eukaryotic P450 isozymes and constitute a useful tool for predicting the specificity of new compounds
    corecore