6,069 research outputs found
Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows
Volatile fatty acids (VFA), produced in the rumen by microbial fermentation, are the main energy source for ruminants. The VFA profile, particularly the nonglucogenic (acetate, Ac; butyrate, Bu) to glucogenic (propionate, Pr) VFA ratio (NGR), is associated with effects on methane production, milk composition, and energy balance. The aim of this study was to evaluate extant rumen VFA stoichiometry models for their ability to predict in vivo VFA molar proportions. The models were evaluated using an independent data set consisting of 101 treatments from 24 peer-reviewed publications with lactating Holstein cows. All publications contained a full diet description, rumen pH, and rumen VFA molar proportions. Stoichiometric models were evaluated based on root mean squared prediction error (RMSPE) and concordance correlation coefficient (CCC) analysis. Of all models evaluated, the 1998 Friggens model had the lowest RMSPE for Ac and Bu (7.2 and 20.2% of observed mean, respectively). The 2006 Bannink model had the lowest RMSPE and highest CCC for Pr (14.4% and 0.70, respectively). The 2008 Bannink model had comparable predictive performance for Pr to that of the 2006 Bannink model but a larger error due to overall bias (26.2% of MSPE). The 1982 Murphy model provided the poorest prediction of Bu, with the highest RMSPE and lowest CCC (24.6% and 0.15, respectively). The 1988 Argyle and Baldwin model had the highest CCC for Ac with an intermediate RMSPE (0.47 and 8.0%, respectively). The 2006 Sveinbjörnsson model had the highest RMSPE (13.9 and 34.0%, respectively) and lowest CCC (0.31 and 0.40, respectively) for Ac and Pr. The NGR predictions had the lowest RMSPE and highest CCC in the 2 models of Bannink, whereas the lowest predictive performance was in the 2006 Sveinbjörnsson model. It appears that the type of VFA produced is not a simple linear relationship between substrate inputs and pH as currently represented. The analysis demonstrates that most rumen VFA stoichiometric approaches explain a large part of the variation in VFA molar proportions among diets, in particular for Ac, whereas predictive power for Pr and Bu differ largely among approaches. The move toward feed evaluation systems based on animal response might necessitate an improved representation of rumen fermentation, focused on improving our understanding of VFA proportions in diets that vary from the mean
Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program
We describe the parallel implementation of our generalized stellar atmosphere
and NLTE radiative transfer computer program PHOENIX. We discuss the parallel
algorithms we have developed for radiative transfer, spectral line opacity, and
NLTE opacity and rate calculations. Our implementation uses a MIMD design based
on a relatively small number of MPI library calls. We report the results of
test calculations on a number of different parallel computers and discuss the
results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses
AASTeX macros and styles natbib.sty, and psfig.st
Spitzer Mapping of PAHs and H2 in Photodissociation Regions
The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are
typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs)
and the lowest pure rotational states of molecular hydrogen (H2); two species
which are probes of the physical properties of gas and dust in intense UV
radiation fields. We utilize the high angular resolution of the Infrared
Spectrograph on the Spitzer Space Telescope to construct spectral maps of the
PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023,
NGC 2023 and IC 63. We present spatially resolved maps of the physical
properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We
also present evidence for PAH dehydrogenation, which may support theories of H2
formation on PAH surfaces, and a detection of preferential self-shielding of
ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2
column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios
of ~ 1.8. We find that while the average of each of these properties is
consistent with previous single value measurements of these PDRs, when
available, the addition of spatial resolution yields a diversity of values with
gas temperatures as high as 1500 K, column densities spanning ~ 2 orders of
magnitude, and extreme ortho-to-para ratios of 3.Comment: 14 figure
Plume mapping and isotopic characterisation of anthropogenic methane sources
Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for delta C-13-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining delta C-13-CH4 to +/- 0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a delta C-13 -CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged delta C-13-CH4 for landfill sites is -58 +/- 3%o. The delta C-13-CH4 signature for gas leaks is also fairly constant around -36 +/- 2 parts per thousand, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 +/- 0.3 parts per thousand to 30.9 +/- 1.4 parts per thousand, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that iiotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution. (C) 2015 Elsevier Ltd. All rights reserved
Modelling the lactation curve of dairy cows using the differentials of growth functions
Descriptions of entire lactations were investigated using six mathematical equations. comprising the differentials of four growth functions (logistic. Gompertz, Schumacher and Morgan) and two other equations (Wood and Dijkstra). The data contained monthly milk yield records from 70 first, 70 second and 75 third parity Iranian Holstein cows. Indicators of fit were model behavior, statistical evaluation and biologically meaningful parameter estimates and lactation features. Analysis of variance with equation, parity and their interaction as factors and with cows as replicates was performed to compare goodness of fit of the equations. The interaction of equation and parity was not significant for any statistics, which showed that there vas no tendency For one equation to fit a given parity better than other equations. Although model behaviour analysis showed better performance of growth functions than the Wood and Dijkstra equations in filling the individual lactation curves, statistical evaluation revealed that there was no significant difference between file goodness of fit of the different equations. Evaluation of lactation features showed that the Dijkstra equation was able to estimate the initial milk yield and peak yield more accurately than the other equations. Overall evaluation of the different equations demonstrated the potential of the differentials of simple empirical growth functions used in file Current study as equations for fitting monthly milk records of Holstein dairy cattle
Effects of regional species pool dynamics on metacommunity structure and ecosystem function
Theory and small-scale experiments predict that biodiversity losses can decrease the magnitude and stability of ecosystem services such as production and nutrient cycling. Most of this research, however, has been isolated from spatial processes, such as dispersal and disturbance, which create and maintain diversity in nature. Since common anthropogenic drivers of biodiversity change, such as habitat fragmentation, species introductions, and climate change, are mediated by these understudied processes, it is unclear how environmental degradation will affect ecosystem services. This dissertation examines how diversity interacts with spatial processes to affect the magnitude and stability of ecosystem functions, using seagrass communities as a model system. Diverse communities were more resistant to colonization, but the order of species arrivals affected competition outcomes. as predicted, grazer metacommunities assembled from diverse species pools were more diverse at all scales, had larger grazer populations, and usually kept their primary food resource, epiphytic algae, at lower abundances than metacommunities assembled from smaller species pools. Counter to theory, increasing the number of mobile grazer species in these metacommunities increased spatial and temporal variability of producers and grazers. Effects of diversity on stability also differed qualitatively between patch and metacommunity scales. Moreover, allowing grazers to move among patches reduced diversity effects on production and modified relationships between grazer diversity and stability. Finally, dispersal significantly increased resistance to and recovery from a mimicked macroalgal bloom. However, diversity did not. None of the existing theories for biodiversity-ecosystem function relationships or consumer-resource metacommunity dynamics completely explained patterns observed in these experiments. Effects of diversity and dispersal on ecosystem functions were complex, but seemed to be influenced by habitat choice and synchronization of grazer and epiphyte dynamics among patches. Overall, these results emphasize the importance of incorporating spatial processes and trophic interactions into the study of biodiversity-ecosystem function relationships. This information is critical for conserving diversity and managing ecosystem services in light of the ongoing changes to regional species pools caused by anthropogenic disturbance
- …