404 research outputs found

    Cis and trans-bis(tetrathiafulvalene-acetylide) platinum(II) complexes: syntheses, crystal structures, and influence of the ancillary ligands on their electronic properties.

    No full text
    International audienceA series of four platinum(II) complexes bearing two tetrathiafulvalene acetylide ligands coordinated either cis or trans to the metal center are reported: cis-Pt(bipy)(C≡CMe(3)TTF)(2), cis-Pt(tBu(2)bipy)(C≡CMe(3)TTF)(2), cis-Pt(dppe)(C≡CMe(3)TTF)(2) and trans-Pt(PPh(3))(2)(C≡CMe(3)TTF)(2). The X-ray diffraction studies of the four complexes are reported and discussed. The electrochemical investigations carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) evidenced different redox behavior as a function of the ancillary ligand. Only for the cis-Pt(dppe)(C≡CMe(3)TTF)(2) complex is the first oxidation wave resolved (ΔE = 70 mV) into two one-electron processes. Spectroelectrochemical investigations performed on the four complexes did not evidence any electronic interactions between the two organic electrophores. The splitting of the first oxidation wave observed in cis-Pt(dppe)(C≡CMe(3)TTF)(2) is mainly explained by the non-equivalence of the two TTF moieties induced by the geometrical constraint imposed by the ancillary dppe ligand as found by density functional theory calculations

    Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat

    Get PDF
    International audienceDescending neuromodulators from the brainstem play a major role in the development and regulation of spinal sensorimotor functions. Here, the contribution of serotonergic signaling in the lumbar spinal cord was investigated in the context of the generation of locomotor activity. Experiments were performed on in vitro spinal cord preparations from newborn rats (0–5 days). Rhythmic locomotor episodes (fictive locomotion) triggered by tonic electrical stimulations (2Hz, 30s) of a single sacral dorsal root were recorded from bilateral flexor-dominated (L2) and extensor-dominated (L5) ventral roots. We found that the activity pattern induced by sacral stimulation evolves over the 5 post-natal (P) day period. Although alternating rhythmic flexor-like motor bursts were expressed at all ages, the locomotor pattern of extensor-like bursting was progressively lost from P1 to P5. At later stages, serotonin (5-HT) and quipazine (5-HT2A receptor agonist) at concentrations sub-threshold for direct locomotor network activation promoted sacral stimulation-induced fictive locomotion. The 5-HT2A receptor antagonist ketanserin could reverse the agonist's action but was ineffective when fictive locomotion was already expressed in the absence of 5-HT (mainly before P2). Although inhibiting 5-HT7 receptors with SB266990 did not affect locomotor pattern organization, activating 5-HT1A receptors with 8-OH-DPAT specifically deteriorated extensor phase motor burst activity. We conclude that during the first 5 post-natal days in rat, serotonergic signaling in the lumbar cord becomes increasingly critical for the expression of fictive locomotion. Our findings therefore further underline the importance of both descending serotonergic and sensory afferent pathways in shaping locomotor activity during postnatal development

    Dust evolution in protoplanetary disks

    Get PDF
    We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with particle size and planetary gaps are much sharper than in the gas phase, making them easier to detect with ALMA than anticipated. We also find that there is a range of masses where a planet can open a gap in the dust layer whereas it doesn't in the gas disk. Our dust distributions are fed to the radiative transfer code MCFOST to compute synthetic images, in order to derive constraints on the settling and growth of dust grains in observed disks.Comment: 6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China

    Intra-Crater Eruption Dynamics at Nyiragongo (D.R. Congo), 2002–2021

    Full text link
    Nyiragongo is one of the rare volcanoes on Earth hosting a lava lake. However, the understanding of its plumbing and lava lake systems remains limited, with, until recently, only sporadic or time-limited historical observations and measurements. Combining dense accurate lava lake and crater floor level measurements based on 1,703 satellite radar images and topographic reconstructions using photogrammetry, we obtain the first reliable picture and time evolution of intra-crater erupted lava volumes between the two last flank eruptions in January 2002 and May 2021. The filling of the crater by lava, initiated in 2002 and continued up to May 2021, is seen as an evidence of a long-term pressure build up of the magmatic system. This filling occurs through irregular pulsatory episodes of rising lava lake level, some of which overflow and solidify on the surrounding crater floor. Pauses of stable molten lava lake level and sudden numerous level drops also marked the summit's eruptive activity. The joint analysis with seismic records available since 2015 revealed that the largest lava lake drops are synchronous with seismic swarms associated with deep magma intrusions, generally preceded by an increase of extrusion rate within the crater. The appearance of a spatter cone in the summit crater in 2016, most likely superficially branched to the lava lake, was a clear marker of the change in eruption dynamics. This first long-term time series of Nyiragongo's crater topography between two hazardous flank eruptions might further help to better decipher Nyiragongo's past and future behavior using multi-parameter observations

    Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate

    Get PDF
    BACKGROUND: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells
    • …
    corecore