1 research outputs found
Probabilistic Model-Based Safety Analysis
Model-based safety analysis approaches aim at finding critical failure
combinations by analysis of models of the whole system (i.e. software,
hardware, failure modes and environment). The advantage of these methods
compared to traditional approaches is that the analysis of the whole system
gives more precise results. Only few model-based approaches have been applied
to answer quantitative questions in safety analysis, often limited to analysis
of specific failure propagation models, limited types of failure modes or
without system dynamics and behavior, as direct quantitative analysis is uses
large amounts of computing resources. New achievements in the domain of
(probabilistic) model-checking now allow for overcoming this problem.
This paper shows how functional models based on synchronous parallel
semantics, which can be used for system design, implementation and qualitative
safety analysis, can be directly re-used for (model-based) quantitative safety
analysis. Accurate modeling of different types of probabilistic failure
occurrence is shown as well as accurate interpretation of the results of the
analysis. This allows for reliable and expressive assessment of the safety of a
system in early design stages