29 research outputs found
713-4 Inhibition of Vascular Superoxide Production in Hypercholesterolemic Rabbit Aorta by L-Arginine Contributes to Restored Endothelium-dependent Relaxation
Chronic oral administration of L-arginine (L-ARG) has been shown to enhance endothelial function in cholesterol (CHOL)-fed rabbits and to reduce atherogenesis. We investigated whether modulation of endogenous NO production (as assessed by urinary NO3-excretion) by L-ARG and the inhibitor of NO synthesis, L-NAME, affects vascular superoxide (O2-) production in hypercholesterolemic rabbits. Phorbol-myristate-acetate (PMA)-stimulated O2-production from isolated aortic rings was increased in rabbits given CHOL (+159±28%) or CHOL + L-NAME (+149±37%) as compared to controls (-22±7%), and endothelium-dependent relaxations by acetylcholine were diminished in both groups. In aortic rings from rabbits given CHOL + L-ARG, PMA-induced O2-production was restored to control levels (+14±17%; p<0.05), and endothelium-dependent cholinergic relaxations were also partly restored. Urinary NO3-excretion decreased in all animals fed a CHOL-enriched diet (p<0.01). As NO inactivated by O2-is also oxidized to NO3-, this indicates a decreased endothelial production of NO. NO3-excretion was further decreased by L-NAME (p<0.05 vs. CHOL), and partly restored by L-ARG (p<0.05). We conclude that both a decreased production of NO and an enhanced breakdown of NO by O2-contribute to the diminished biological activity of endothelial NO in hypercholesterolemia. L-ARG restores endothelial function by enhancing NO formation and by protecting NO from early breakdown by O2-
Restoring vascular nitric oxide formation by l-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease
AbstractBackground. Administration of l-arginine improves nitric oxide (NO) formation and endothelium-dependent vasodilation in atherosclerotic patients.Objectives. We investigated in this double-blind, controlled study whether prolonged intermittent infusion therapy with l-arginine improves the clinical symptoms of patients with intermittent claudication, as compared with the endothelium-independent vasodilator prostaglandin E1, and control patients.Methods. Thirty-nine patients with intermittent claudication were randomly assigned to receive 2 Ă 8 g l-arginine/day, or 2 Ă 40 ÎŒg prostaglandin E1(PGE1)/day or no hemodynamically active treatment, for 3 weeks. The pain-free and absolute walking distances were assessed on a walking treadmill at 3 km/h, 12% slope, and NO-mediated, flow-induced vasodilation of the femoral artery was assessed by ultrasonography at baseline, at 1, 2 and 3 weeks of therapy and 6 weeks after the end of treatment. Urinary nitrate and cyclic guanosine-3âČ, 5âČ-monophosphate (GMP) were assessed as indices of endogenous NO production.Results. l-Arginine improved the pain-free walking distance by 230 ± 63% and the absolute walking distance by 155 ± 48% (each p < 0.05). Prostaglandin E1improved both parameters by 209 ± 63% and 144 ± 28%, respectively (each p < 0.05), whereas control patients experienced no significant change. l-Arginine therapy also improved endothelium-dependent vasodilation in the femoral artery, whereas PGE1had no such effect. There was a significant linear correlation between the l-arginine/asymmetric dimethylarginine (ADMA) ratio and the pain-free walking distance at baseline (r = 0.359, p < 0.03). l-Arginine treatment elevated the plasma l-arginine/ADMA ratio and increased urinary nitrate and cyclic GMP excretion rates, indicating normalized endogenous NO formation. Prostaglandin E1therapy had no significant effect on any of these parameters. Symptom scores assessed on a visual analog scale increased from 3.51 ± 0.18 to 8.3 ± 0.4 (l-arginine) and 7.0 ± 0.5 (PGE1; each p < 0.05), but did not significantly change in the control group (4.3 ± 0.4).Conclusions. Restoring NO formation and endothelium-dependent vasodilation by l-arginine improves the clinical symptoms of intermittent claudication in patients with peripheral arterial occlusive disease
Effects of Paracetamol on NOS, COX, and CYP Activity and on Oxidative Stress in Healthy Male Subjects, Rat Hepatocytes, and Recombinant NOS
Paracetamol (acetaminophen) is a widely used analgesic drug. It interacts with various enzyme families including cytochrome P450 (CYP), cyclooxygenase (COX), and nitric oxide synthase (NOS), and this interplay may produce reactive oxygen species (ROS). We investigated the effects of paracetamol on prostacyclin, thromboxane, nitric oxide (NO), and oxidative stress in four male subjects who received a single 3âg oral dose of paracetamol. Thromboxane and prostacyclin synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-ketoprostaglandin F1α, respectively. Endothelial NO synthesis was assessed by measuring nitrite in plasma. Urinary 15(S)-8-iso-prostaglanding F2α was measured to assess oxidative stress. Plasma oleic acid oxide (cis-EpOA) was measured as a marker of cytochrome P450 activity. Upon paracetamol administration, prostacyclin synthesis was strongly inhibited, while NO synthesis increased and thromboxane synthesis remained almost unchanged. Paracetamol may shift the COX-dependent vasodilatation/vasoconstriction balance at the cost of vasodilatation. This effect may be antagonized by increasing endothelial NO synthesis. High-dosed paracetamol did not increase oxidative stress. At pharmacologically relevant concentrations, paracetamol did not affect NO synthesis/bioavailability by recombinant human endothelial NOS or inducible NOS in rat hepatocytes. We conclude that paracetamol does not increase oxidative stress in humans
Multiancestry analysis of the HLA locus in Alzheimerâs and Parkinsonâs diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinsonâs disease (PD) and Alzheimerâs disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Relationship of asymmetric dimethylarginine to dialysis treatment and atherosclerotic disease
Relationship of asymmetric dimethylarginine to dialysis treatment and atherosclerotic disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide (NO) synthase. Its concentration is elevated in patients with end-stage renal disease (ESRD), in part because it is excreated via the kidneys. In addition, ADMA is degraded by the enzyme dimethylarginine dimethylaminohydrolase (DDAH), which hydrolyzes ADMA to L-citrulline and dimethylamine. Activity of DDAH is decreased by oxidized low density lipoprotein (LDL) or tumor necrosis factor-α (TNF-α) in vitro yielding increased levels of ADMA. Furthermore, plasma levels of ADMA are elevated in hyperhomocyst(e) inemia and in hypertensive patients on a high salt diet. Data from several experimental studies suggest that ADMA concentrations in a pathophysiologically high range (3 to 10 Όmol/L) significantly inhibit vascular NO formation by NO synthase in the presence of L-arginine in isolated human blood vessels, cultured macrophages, and in cultured endothelial cells. It has been well demonstrated that ADMA accumulates in chronic renal failure. Although there is controversy concerning the absolute concentration of ADMA, all authors found a two-to sixfold increase in ADMA levels in patients in chronic renal failure as compared to controls. Different dialysis treatment strategies differentially affect ADMA levels. The presence of atherosclerosis is associated with higher ADMA levels in patients with normal renal function as well as in dialysis patients, but this phenomenon may be unrelated to renal handling of ADMA. Reduced NO elaboration secondary to accumulation of ADMA may be an important pathogenic factor for atherosclerosis in chronic renal failure and ADMA may be a new uremic toxin. Clinical studies on the effect of ADMA are needed to further elucidate its pathophysiological role in atherosclerosis and uremia
Effect of captopril on prostacyclin and nitric oxide formation in healthy human subjects: Interaction with low dose acetylsalicylic acid
1Angiotensin converting enzyme inhibitors have been suggested to act in part by potentiating the stimulatory effect of bradykinin on endothelial prostacyclin and/or nitric oxide (NO) formation. This may give rise to interaction with cyclo-oxygenase inhibiting drugs like acetylsalicylic acid, which is most often used in low doses in patients with cardiovascular diseases