3 research outputs found

    Privacy Constrained Fairness Estimation for Decision Trees

    Get PDF
    The protection of sensitive data becomes more vital, as data increases in value and potency. Furthermore, the pressure increases from regulators and society on model developers to make their Artificial Intelligence (AI) models non-discriminatory. To boot, there is a need for interpretable, transparent AI models for high-stakes tasks. In general, measuring the fairness of any AI model requires the sensitive attributes of the individuals in the dataset, thus raising privacy concerns. In this work, the trade-offs between fairness, privacy and interpretability are further explored. We specifically examine the Statistical Parity (SP) of Decision Trees (DTs) with Differential Privacy (DP), that are each popular methods in their respective subfield. We propose a novel method, dubbed Privacy-Aware Fairness Estimation of Rules (PAFER), that can estimate SP in a DP-aware manner for DTs. DP, making use of a third-party legal entity that securely holds this sensitive data, guarantees privacy by adding noise to the sensitive data. We experimentally compare several DP mechanisms. We show that using the Laplacian mechanism, the method is able to estimate SP with low error while guaranteeing the privacy of the individuals in the dataset with high certainty. We further show experimentally and theoretically that the method performs better for DTs that humans generally find easier to interpret

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide
    corecore