63 research outputs found

    Technologies of sleep research

    Get PDF
    Sleep is investigated in many different ways, many different species and under many different circumstances. Modern sleep research is a multidisciplinary venture. Therefore, this review cannot give a complete overview of all techniques used in sleep research and sleep medicine. What it will try to do is to give an overview of widely applied techniques and exciting new developments. Electroencephalography has been the backbone of sleep research and sleep medicine since its first application in the 1930s. The electroencephalogram is still used but now combined with many different techniques monitoring body and brain temperature, changes in brain and blood chemistry, or changes in brain functioning. Animal research has been very important for progress in sleep research and sleep medicine. It provides opportunities to investigate the sleeping brain in ways not possible in healthy volunteers. Progress in genomics has brought new insights in sleep regulation, the best example being the discovery of hypocretin/orexin deficiency as the cause of narcolepsy. Gene manipulation holds great promise for the future since it is possible not only to investigate the functions of different genes under normal conditions, but also to mimic human pathology in much greater detail

    Leveraging analytics to produce compelling and profitable film content

    Get PDF
    Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user generated content and original content produced by Subscription Video on Demand (SVOD) platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications

    Measurement of w-InN/h-BN Heterojunction Band Offsets by X-Ray Photoemission Spectroscopy

    Get PDF
    X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being −0.30 ± 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 ± 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices

    Understanding hereditary diseases using the dog and human as companion model systems

    Get PDF
    Animal models are requisite for genetic dissection of, and improved treatment regimens for, human hereditary diseases. While several animals have been used in academic and industrial research, the primary model for dissection of hereditary diseases has been the many strains of the laboratory mouse. However, given its greater (than the mouse) genetic similarity to the human, high number of naturally occurring hereditary diseases, unique population structure, and the availability of the complete genome sequence, the purebred dog has emerged as a powerful model for study of diseases. The major advantage the dog provides is that it is afflicted with approximately 450 hereditary diseases, about half of which have remarkable clinical similarities to corresponding diseases of the human. In addition, humankind has a strong desire to cure diseases of the dog so these two facts make the dog an ideal clinical and genetic model. This review highlights several of these shared hereditary diseases. Specifically, the canine models discussed herein have played important roles in identification of causative genes and/or have been utilized in novel therapeutic approaches of interest to the dog and human

    History of narcolepsy at Stanford University

    Get PDF

    Sophomore engineering design: back to the future

    No full text
    Design is a critical component of any engineering curriculum. It is possible to integrate a sophomore engineering design course focused on the theory of design and its application with the curriculum found in an elementary (K–5) school. The primary objective was to design science demonstrations for local elementary schools as part of a sophomore design course at The University of Georgia. This joint venture proves to be valuable for both sophomore engineers and elementary science students

    Sophomore engineering design: back to the future

    No full text
    Design is a critical component of any engineering curriculum. It is possible to integrate a sophomore engineering design course focused on the theory of design and its application with the curriculum found in an elementary (K–5) school. The primary objective was to design science demonstrations for local elementary schools as part of a sophomore design course at The University of Georgia. This joint venture proves to be valuable for both sophomore engineers and elementary science students

    Evaluation of the relationship of tibiofemoralkinematics before and after total knee replacement in an in vitro model of cranial cruciate deficiency in the dog

    No full text
    OBJECTIVE: To investigate the relationship between tibiofemoral kinematics before and after total knee replacement (TKR) in vitro. ANIMALS: Eight canine hemipelves. METHODS: A modified Oxford Knee Rig was used to place cadaveric limbs through a range of passive motion allowing the kinematics of the stifle to be evaluated. Four measurements were performed: a control stage, followed by a cranial cruciate transection stage, then following TKR with the musculature intact stage, and finally TKR with removal of limb musculature stage. Joint angles and translations of the femur relative to the tibia, including flexion-extension versus adduction-abduction, flexion-extension versus internal-external rotation, as well as flexion-extension versus each translation (cranial-caudal and lateral-medial) were calculated. RESULTS: Significant differences were identified in kinematic data from limbs following TKR implantation as compared to the unaltered stifle. The TKR resulted in significant decreases in external rotation of the stifle during flexion-extension compared to the limb prior to any intervention, as well as increasing the abduction. The TKR significantly increased the caudal translation of the femur relative to the tibia compared to the unaltered limb. When compared with the cranial cruciate ligament-transection stage, TKR significantly decreased the ratio of the external rotation to flexion. DISCUSSION: All three test periods showed significant differences from the unaltered stifle. The TKR did not completely restore the normal kinematics of the stifle

    Cutaneous recording of electroencephalograms in electrically stunned broiler chickens

    No full text
    Methodology was developed to record electroencephalograms (EEGs) from chickens using skin surface contact electrodes and telemetry transmitter and receiving units prior to and immediately after electrical stunning. Optimal location of the three electrodes was determined using scaleless ”featherless” chickens. Broilers required plucking of feathers on the neck caudal to the comb ( 2 x 3 cm) under mild anesthesia the day prior to recording EEGs. The telemetry transmitter was protected from the stunning voltage with a custom-built circuit designed to reduce high amplitude AC and DC voltages to less than 0.8 V. This configuration permitted recording of EEG signals prior to and within 3.5 s after termination of the applied stunning current. EEGs were recorded during two different electrical stunning protocols with the current applied to a standing chicken (wattle + and vent -). The first stun protocol was at 8 mA, 12 V (500 Hz) pulse DC for 11 s immediately followed by 12 V (60 Hz) AC for 4 s. The broilers were given several minutes to recover and then stunned again using the second stun protocol set at 103 mA (60 Hz AC) for 4 s, which was sufficient to induce cardiac arrest. The EEG recordings of the second stun protocol were evaluated to determine wave characteristics and the duration of poststun brain activity. The poststun EEG recordings depicted a brief period of high amplitude spikes, which progressively diminished in amplitude with time. This high amplitude polyspike wave form has been assumed to be analogous to the insensibility period that occurs during epileptic seizures in humans. This poststun data, in both wave form and duration of brain activity (39 s), appears similar to that described in the literature for chickens (32 s). Use of the cutaneous-telemetry system to record brain EEG activity in chickens following electrical stunning may provide the opportunity to quantitatively optimize stunning voltage, current, and frequency. Optimal stun parameters should minimize the time to death, and diminish skeletal muscle contraction and the carcass defects associated with electrical stunning

    Cutaneous recording of electroencephalograms in electrically stunned broiler chickens

    No full text
    Methodology was developed to record electroencephalograms (EEGs) from chickens using skin surface contact electrodes and telemetry transmitter and receiving units prior to and immediately after electrical stunning. Optimal location of the three electrodes was determined using scaleless ”featherless” chickens. Broilers required plucking of feathers on the neck caudal to the comb ( 2 x 3 cm) under mild anesthesia the day prior to recording EEGs. The telemetry transmitter was protected from the stunning voltage with a custom-built circuit designed to reduce high amplitude AC and DC voltages to less than 0.8 V. This configuration permitted recording of EEG signals prior to and within 3.5 s after termination of the applied stunning current. EEGs were recorded during two different electrical stunning protocols with the current applied to a standing chicken (wattle + and vent -). The first stun protocol was at 8 mA, 12 V (500 Hz) pulse DC for 11 s immediately followed by 12 V (60 Hz) AC for 4 s. The broilers were given several minutes to recover and then stunned again using the second stun protocol set at 103 mA (60 Hz AC) for 4 s, which was sufficient to induce cardiac arrest. The EEG recordings of the second stun protocol were evaluated to determine wave characteristics and the duration of poststun brain activity. The poststun EEG recordings depicted a brief period of high amplitude spikes, which progressively diminished in amplitude with time. This high amplitude polyspike wave form has been assumed to be analogous to the insensibility period that occurs during epileptic seizures in humans. This poststun data, in both wave form and duration of brain activity (39 s), appears similar to that described in the literature for chickens (32 s). Use of the cutaneous-telemetry system to record brain EEG activity in chickens following electrical stunning may provide the opportunity to quantitatively optimize stunning voltage, current, and frequency. Optimal stun parameters should minimize the time to death, and diminish skeletal muscle contraction and the carcass defects associated with electrical stunning
    • 

    corecore