49 research outputs found

    Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae

    Get PDF
    Carbon nanotubes (CNTs) tend to readily agglomerate and settle down in water, while the adsorption of compounds present in natural aquatic media could enhance their dispersion and stabilization in the water column. We designed a new exposure protocol to compare the biological responses of Xenopus laevis larvae exposed in semi-static conditions to size-reduced agglomerates of multi-walled carbon nanotubes (MWCNTs) in suspension in the water column and/or to larger agglomerates. Suspensions were prepared using a combination of a non-covalent functionalization with a non-toxic polymer (either carboxymethylcellulose, CMC, or gum arabic, GA) and mechanical dispersion methods (mainly ultrasonication). The ingestion of agglomerates which have settled down was incriminated in the disruption of the intestinal transit and the assimilation of nutrients, leading to acute and chronic toxicities at the highest tested concentrations. Rise in mortality, decrease in the growth rate and induction of genotoxicity from low concentrations (1 mg/L in the presence of CMC) were evidenced in presence of suspended MWCNTs in the water column. The biological responses seemed to be modulated when GA, a potential antioxidant, was used. We hypothesized that MWCNTs should interfere mainly at the surface of the gills, acting as a potential respiratory toxicant and generally inducing indirect effects

    Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains

    Get PDF
    International audiencePlant cell walls are made of polysaccharidic-proteinaceous complex matrices. Molecular interactions governing their organization remain understudied. We take advantage of the highly dynamic cell walls of Arabidopsis seed mucilage secretory cells to propose a hierarchical multi-molecular interaction model within a cell wall domain. We show that the PECTINMETHYLESTERASE INHIBITOR6 activity creates a partially demethylesterified pectin pattern acting as a platform allowing positioning of PEROXIDASE36 in a remote primary cell wall domain during early development. This allows triggering the loosening of this domain during later development, in turn leading to proper physiological function upon mature seed imbibition and germination. We anticipate that this pioneer example of molecular scaffold within a cell wall domain is more widespread through other combinations of the individual molecular players all belonging to large multigenic families. These results highlight the role of cell wall polysaccharide-protein interactions in the organization of cell wall domains

    Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms

    Get PDF
    The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8±14.1mg Ce/kg). Mortality (35.3±6.8%) and a mean Ce concentration of 13.5±3.9mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism’s interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems

    A new HPF specimen carrier adapter for the use of high-pressure freezing with cryo-scanning electron microscope: two applications: stearic acid organization in a hydroxypropyl methylcellulose matrix and mice myocardium .

    Get PDF
    Cryogenic transmission electron microscopy of high-pressure freezing (HPF) samples is a well-established technique for the analysis of liquid containing specimens. This technique enables observation without removing water or other volatile components. The HPF technique is less used in scanning electron microscopy (SEM) due to the lack of a suitable HPF specimen carrier adapter. The traditional SEM cryotransfer system (PP3000T Quorum Laughton, East Sussex, UK; Alto Gatan, Pleasanton, CA, USA) usually uses nitrogen slush. Unfortunately, and unlike HPF, nitrogen slush produces water crystal artefacts. So, we propose a new HPF specimen carrier adapter for sample transfer from HPF system to cryogenic-scanning electronic microscope (Cryo-SEM). The new transfer system is validated using technical two applications, a stearic acid in hydroxypropyl methylcellulose solution and mice myocardium. Preservation of samples is suitable in both cases. Cryo-SEM examination of HPF samples enables a good correlation between acid stearic liquid concentration and acid stearic occupation surface (only for homogeneous solution). For biological samples as myocardium, cytoplasmic structures of cardiomyocyte are easily recognized with adequate preservation of organelle contacts and inner cell organization. We expect this new HPF specimen carrier adapter would enable more SEM-studies using HPF

    Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects

    No full text
    International audienceElectric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors. This review describes the main therapeutic trends and overviews the main physical, chemical and biological mechanisms underlying the actions of electric fields. Overall, the electric field can be used in therapeutic approaches in several ways. The electric field can act on drug carriers, cells and tissues. Understanding the multiple effects of this powerful tool will help harnessing its full therapeutic potential in an efficient and safe way

    USE OF TANNIN RICH PLANTS FOR THE CONTROL OF GASTROINTESTINAL NEMATODES IN SMALL RUMINANTS IN ORGANIC FARMING SYSTEMS.

    No full text
    Gastrointestinal nematodes represent one of the main threat associated with the use of pastures by grazing small ruminants. In organic farming systems, the use of chemical treatments to control these parasitic diseases remain strictly limited. There is thus a need to explore novel, alternative approaches to complement or replace the action of chemical anthelmintics. This seek for novel solutions is also widely required in other farming systems, because of the widespread diffusion of anthelmintic (AH) resistance within worm populations and because of the increasing concern of consumers on drug residues in animal products

    Cold helium plasma jet does not stimulate collagen remodeling in a 3D human dermal substitute

    No full text
    International audienceCold Atmospheric Plasma (CAP) is an emerging physical approach displaying encouraging antitumor and wound healing effects both in vitro and in vivo. In this study, we assessed the potential of direct CAP to remodel skin collagens using an original tissue-engineered human dermal substitute model rich in endogenous extracellular matrix (ECM) covered with 600 µl of culture medium and treated with CAP for 30 and 120 seconds. Our results indicated that Reactive Oxygen and Nitrogen Species such as H2O2, NO3- and NO2- were produced in the medium during treatment. It appeared that in the CAP-treated dermal substitutes 1) cell viability was not altered, 2) pro-collagen I secretion was not modified over 48 h of culture after treatment, 3) global activity of matrix metalloproteinases was not modulated over 48 h after treatment, and 4) no change in hydroxyproline content was observed over 5 days after treatment. In order to confirm the efficiency of our device, we showed that the plasma-activated culture medium induced cell apoptosis and growth delay using a 3D human tumor spheroid model. In conclusion, no effect of direct CAP treatment was monitored on ECM production and degradation, indicating that CAP does not stimulate collagen remodeling at the tissue scale

    Calcium Delivery by Electroporation Induces In Vitro Cell Death through Mitochondrial Dysfunction without DNA Damages.

    No full text
    Adolescent cancer survivors present increased risks of developing secondary malignancies due to cancer therapy. Electrochemotherapy is a promising anti-cancer approach that potentiates the cytotoxic effect of drugs by application of external electric field pulses. Clinicians proposed to associate electroporation and calcium. The current study aims to unravel the toxic mechanisms of calcium electroporation, in particular if calcium presents a genotoxic profile and if its cytotoxicity comes from the ion itself or from osmotic stress. Human dermal fibroblasts and colorectal HCT-116 cell line were treated by electrochemotherapy using bleomycin, cisplatin, calcium, or magnesium. Genotoxicity, cytotoxicity, mitochondrial membrane potential, ATP content, and caspases activities were assessed in cells grown on monolayers and tumor growth was assayed in tumor spheroids. Results in monolayers show that unlike cisplatin and bleomycin, calcium electroporation induces cell death without genotoxicity induction. Its cytotoxicity correlates with a dramatic fall in mitochondrial membrane potential and ATP depletion. Opposite of magnesium, over seven days of calcium electroporation led to spheroid tumor growth regression. As non-genotoxic, calcium has a better safety profile than conventional anticancer drugs. Calcium is already authorized by different health authorities worldwide. Therefore, calcium electroporation should be a cancer treatment of choice due to the reduced potential of secondary malignancies

    Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem Soc Trans 41:436–442

    No full text
    Abstract Thermococcus species produce MVs (membrane vesicles) into their culture medium. These MVs are formed by a budding process from the cell envelope, similar to ectosome formation in eukaryotic cells. The major protein present in MVs of Thermococci is a peptide-binding receptor of the OppA (oligopeptide-binding protein A) family. In addition, some of them contain a homologue of stomatin, a universal membrane protein involved in vesiculation. MVs produced by Thermococcus species can recruit endogenous or exogenous plasmids and plasmid transfer through MVs has been demonstrated in Thermococcus kodakaraensis. MVs are frequently secreted in clusters surrounded by S-layer, producing either big protuberances (nanosphere) or tubular structures (nanotubes). Thermococcus gammatolerans and T. kodakaraensis produce nanotubes containing strings of MVs, resembling the recently described nanopods in bacteria, whereas Thermococcus sp. 5-4 produces filaments whose internal membrane is continuous. These nanotubes can bridge neighbouring cells, forming cellular networks somehow resembling nanotubes recently observed in Firmicutes. As suggested for bacteria, archaeal nanopods and/or nanotubes could be used to expand the metabolic sphere around cells and/or to promote intercellular communication
    corecore