327 research outputs found
Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small cell lung cancer (NSCLC): A feasibility study
Background: Concurrent chemoradiotherapy has improved survival in inoperable stage III non-small cell lung cancer (NSCLC). This phase I trial was performed in order to establish a dose recommendation for oral vinorelbine in combination with cisplatin and simultaneous radiotherapy. Patients and Methods: Previously untreated patients with stage IIIB NSCLC received concurrent chemoradiotherapy with 66 Gy and 2 cycles of cisplatin and oral vinorelbine which was administered at 3 different levels (40, 50 and 60 mg/m(2)). This was to be followed by 2 cycles of cisplatin/vinorelbine oral consolidation chemotherapy. The study goal was to determine the maximal recommended dose of oral vinorelbine during concurrent treatment. Results: 11 stage IIIB patients were entered into the study. The median radiotherapy dose was 66 Gy. Grade 3-4 toxicity included neutropenia, esophagitis, gastritis and febrile neutropenia. The dose-limiting toxicity for concurrent chemoradiotherapy was esophagitis. 9 patients received consolidation chemotherapy, with neutropenia and anemia/thrombocytopenia grade 3 being the only toxicities. The overall response was 73%. Conclusion: Oral vinorelbine 50 mg/m(2) (days 1, 8, 15 over 4 weeks) in combination with cisplatin 20 mg/m2 (days 1-4) is the recommended dose in combination with radiotherapy (66 Gy) and will be used for concurrent chemoradiotherapy in a forthcoming phase III trial testing the efficacy of consolidation chemotherapy in patients not progressing after chemoradiotherapy
Dzyaloshinskii-Moriya interaction in transport through single molecule transistors
The Dzyaloshinskii-Moriya interaction is shown to result in a canting of
spins in a single molecule transistor. We predict non-linear transport
signatures of this effect induced by spin-orbit coupling for the generic case
of a molecular dimer. The conductance is calculated using a master equation and
is found to exhibit a non-trivial dependence on the magnitude and direction of
an external magnetic field. We show how three-terminal transport measurements
allow for a determination of the coupling-vector characterizing the
Dzyaloshinskii-Moriya interaction. In particular, we show how its orientation,
defining the intramolecular spin chirality, can be probed with ferromagnetic
electrodes
Optical investigation of the charge-density-wave phase transitions in
We have measured the optical reflectivity of the quasi
one-dimensional conductor from the far infrared up to the
ultraviolet between 10 and 300 using light polarized along and normal to
the chain axis. We find a depletion of the optical conductivity with decreasing
temperature for both polarizations in the mid to far-infrared region. This
leads to a redistribution of spectral weight from low to high energies due to
partial gapping of the Fermi surface below the charge-density-wave transitions
at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss
the scattering of ungapped free charge carriers and the role of fluctuations
effects
Observation of spin-selective tunneling in SiGe nanocrystals
Spin-selective tunneling of holes in SiGe nanocrystals contacted by
normal-metal leads is reported. The spin selectivity arises from an interplay
of the orbital effect of the magnetic field with the strong spin-orbit
interaction present in the valence band of the semiconductor. We demonstrate
both experimentally and theoretically that spin-selective tunneling in
semiconductor nanostructures can be achieved without the use of ferromagnetic
contacts. The reported effect, which relies on mixing the light and heavy
holes, should be observable in a broad class of quantum-dot systems formed in
semiconductors with a degenerate valence band.Comment: 8 pages, 5 figure
Temporally ordered collective creep and dynamic transition in the charge-density-wave conductor NbSe3
We have observed an unusual form of creep at low temperatures in the
charge-density-wave (CDW) conductor NbSe. This creep develops when CDW
motion becomes limited by thermally-activated phase advance past individual
impurities, demonstrating the importance of local pinning and related
short-length-scale dynamics. Unlike in vortex lattices, elastic collective
dynamics on longer length scales results in temporally ordered motion and a
finite threshold field. A first-order dynamic phase transition from creep to
high-velocity sliding produces "switching" in the velocity-field
characteristic.Comment: 4 pages, 4 eps figures; minor clarifications To be published in Phys.
Rev. Let
On the nature of tunable hole g-factors in quantum dots
Electrically tunable g-factors in quantum dots are highly desirable for
applications in quantum computing and spintronics. We report giant modulation
of the hole g-factor in a SiGe nanocrystal when an electric field is applied to
the nanocrystal along its growth direction. We derive a contribution to the
g-factor that stems from an orbital effect of the magnetic field, which lifts
the Kramers degeneracy in the nanocrystal by altering the mixing between the
heavy and the light holes. We show that the relative displacement between the
heavy- and light-hole wave functions, occurring upon application of the
electric field, has an effect on the mixing strength and leads to a strong
non-monotonic modulation of the g-factor. Despite intensive studies of the
g-factor since the late 50's, this mechanism of g-factor control has been
largely overlooked in the literature.Comment: 9 pages, 6 figure
The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer
International audienceHeparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell-and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients
Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response
The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses
BACKGROUND: Histone deacetylase inhibitors (HDACIs) induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA) on primary T cells. METHODS: To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. RESULTS: We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G(1 )phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC) plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS) scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. CONCLUSIONS: Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders
- âŠ