108 research outputs found
Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model
It had been shown that the transition from a rigidly rotating spiral wave to a meandering spiral wave is via a Hopf bifurcation. Many studies have shown that these bifurcations are supercritical, but, by using simulations in a comoving frame of reference, we present numerical results which show that subcritical bifurcations are also present within FitzHugh-Nagumo. We show that a hysteresis region is present at the boundary of the rigidly rotating spiral waves and the meandering spiral waves for a particular set of parameters, a feature of FitzHugh-
Nagumo that has previously not been reported. Furthermore, we present a evidence that this bifurcation is highly sensitive to initial conditions, and it is possible to convert one solution in the hysteresis loop to the other
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
A vegetation and soil survey method for surveillance monitoring of rangeland environments
Published: 16 June 2020Ecosystem surveillance monitoring is critical to managing natural resources and especially so under changing environments. Despite this importance, the design and implementation of monitoring programs across large temporal and spatial scales has been hampered by the lack of appropriately standardized methods and data streams. To address this gap, we outline a surveillance monitoring method based on permanent plots and voucher samples suited to rangeland environments around the world that is repeatable, cost-effective, appropriate for large-scale comparisons, and adaptable to other global biomes. The method provides comprehensive data on vegetation composition and structure along with soil attributes relevant to plant growth, delivered as a combination of modules that can be targeted for different purposes or available resources. Plots are located in a stratified design across vegetation units, landforms, and climates to enhance continental and global comparisons. Changes are investigated through revisits. Vegetation is measured to inform on composition, cover, and structure. Samples of vegetation and soils are collected and tracked by barcode labels and stored long-term for subsequent analysis. Technology is used to enhance the accuracy of field methods, including differential GPS plot locations, instrument-based Leaf Area Index (LAI) measures, and three dimensional photo-panoramas for advanced analysis. A key feature of the method is the use of electronic field data collection to enhance data delivery into a publicly accessible database. Our method is pragmatic, whilst still providing consistent data, information, and samples on key vegetation and soil attributes. The method is operational and has been applied at more than 704 field locations across the Australian rangelands as part of the Ecosystem Surveillance program of the Terrestrial Ecosystem Research Network (TERN). The methodology enables continental analyses and has been tested in communities broadly representative of rangelands globally, with components being applicable to other biomes. Here we also recommend the consultative process and guiding principles that drove the development of this method as an approach for development of the method into other biomes. The consistent, standardized and objective method enables continental, and potentially global analyses than were not previously possible with disparate programs and datasets.Ben D. Sparrow, Jeff N. Foulkes, Glenda M. Wardle, Emrys J. Leitch, Stefan Caddy-Retalic, Stephen J. van Leeuwen ... et al
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5
We describe our theoretical formalism and computational scheme for making
ab-initio calculations of the dynamic paramagnetic spin susceptibilities of
metals and alloys at finite temperatures. Its basis is Time-Dependent Density
Functional Theory within an electronic multiple scattering, imaginary time
Green function formalism. Results receive a natural interpretation in terms of
overdamped oscillator systems making them suitable for incorporation into spin
fluctuation theories. For illustration we apply our method to the nearly
ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5.
We compare and contrast the spin dynamics of these two metals and in each case
identify those fluctuations with relaxation times much longer than typical
electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000
High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
We report on the realization of a high quality distributed Bragg reflector
with both high and low refractive index layers lattice matched to ZnTe. Our
structure is grown by molecular beam epitaxy and is based on binary compounds
only. The high refractive index layer is made of ZnTe, while the low index
material is made of a short period triple superlattice containing MgSe, MgTe,
and ZnTe. The high refractive index step of Delta_n=0.5 in the structure
results in a broad stopband and the reflectivity coefficient exceeding 99% for
only 15 Bragg pairs.Comment: 4 pages, 3 figure
A search for the decay
We search for the rare flavor-changing neutral-current decay in a data sample of 82 fb collected with the {\sl BABAR}
detector at the PEP-II B-factory. Signal events are selected by examining the
properties of the system recoiling against either a reconstructed hadronic or
semileptonic charged-B decay. Using these two independent samples we obtain a
combined limit of
at the 90% confidence level. In addition, by selecting for pions rather than
kaons, we obtain a limit of using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
Altered subgenomic RNA abundance provides unique insight into SARS-CoV-2 B.1.1.7/Alpha variant infections
B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3’ of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern
EuFeAs under high pressure: an antiferromagnetic bulk superconductor
We report the ac magnetic susceptibility and resistivity
measurements of EuFeAs under high pressure . By observing nearly
100% superconducting shielding and zero resistivity at = 28 kbar, we
establish that -induced superconductivity occurs at ~30 K in
EuFeAs. shows an anomalous nearly linear temperature dependence
from room temperature down to at the same . indicates that
an antiferromagnetic order of Eu moments with ~20 K persists
in the superconducting phase. The temperature dependence of the upper critical
field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
- …