39,923 research outputs found
Recommended from our members
Three-dimensional cometary dust coma modelling in the collisionless regime: strengths and weaknesses
Inverse coma and tail modelling of comets based on the method developed by Finson & Probstein is commonly used to analyse cometary coma images. Models of this type often contain a large number of assumptions that may not be constrained unless wide temporal or spectral coverage is available and the comets are bright and at relatively small geocentric distance. They are used to predict physical parameters, such as the mass distribution of the dust, but rarely give assessments of the accuracy of the estimate. A three-dimensional cometary dust coma model in the collisionless regime has been developed to allow the effectiveness of such models to constrain dust coma properties to be tested. The model is capable of simulating the coma morphology for the following input parameters: the comet nucleus shape, size, rotation, emission function (including active fraction and jets), grain velocity distribution (and dispersion), size distribution, dust production rate, grain material and light scattering from the cometary dust.
Characterization of the model demonstrates that the mass distribution cannot be well constrained as is often assumed; the cumulative mass distribution index ? can only be constrained to within ±0.15. The model is highly sensitive to the input grain terminal velocity distribution so model input can be tested with a large degree of confidence. Complex secondary parameters such as jets, rotation and grain composition all have an effect on the structure of the coma in similar ways, so unique solutions for these parameters cannot be derived from a single optical image alone. Multiple images at a variety of geometries close in time can help constrain these effects.
The model has been applied to photometric observations of comets 126P/IRAS and 46P/Wirtanen to constrain a number of physical properties including the dust production rate and mass distribution index. The derived dust production rate (Qdust) for 46P/Wirtanen was 3+7/1.5 kg s1 at a pre-perihelion heliocentric distance of 1.8 au, and for P/IRAS was 50+100/20 kg s1 at a pre-perihelion heliocentric distance of 1.7 au; both comets exhibited a mass distribution index ? = 0.8 ± 0.15
Semiclassical description of the kinematically complete experiments
Based on the semiclassical, impact parameter method a theoretical model is
constructed to calculate totally differential cross sections for single
ionization of helium by impact with fast C ions. Good agreement with the
experiment is achieved in the scattering plane, while in the perpendicular
plane a similar structure to that observed experimentally is obtained. The
contribution of different partial waves to the cross section is also
investigated.Comment: 9 pages, 6 figure
An exploratory investigation of the effect of a plastic coating on the profile drag of a practical-metal-construction sailplane airfoil
The Langley low-turbulence pressure tunnel to determine the effect of a plastic coating on the profile drag of a practical-metal-construction sailplane airfoil was investigated. The model was tested with three surface configurations: (1) filled, painted, and sanded smooth; (2) rough bare metal; and (3) plastic-coated. The results are compared with data for the design airfoil (Wortmann FX 67-K-170/17) from another low-turbulence wind tunnel. The investigation was conducted at Reynolds numbers based on airfoil chord of 1.1 x 10 to the 6th power, 2.2 x 10 to the 6th power, and 3.3 x 10 to the 6th power at a Mach number of 0.10
The curatorial consequences of being moved, moveable or portable: the case of carved stones
It matters whether a carved stone is moved, moveable or portable. This influences perceptions of significance and of form and nature – is it a monument or an artefact? This duality may in turn affect understanding and appreciation of the resource. It has implications for how and if carved stones can be legally protected, who owns them, where and how they are administered, and by whom. The complexities of the legislation mean that all too often this is also a grey area. This paper explores these curatorial issues and their impact
The effects of spacecraft environments on some hydrolytic enzyme patterns in bacteria
The effects of space flight on the production and characteristics of proteolytic enzymes are studied for a number of bacterial species isolated from crew members and spacecraft. Enzymatic make-up and cultural characteristics of bacteria isolated from spacecraft crew members are determined. The organism Aeromonas proteolytica and the proteolytic enzymes which it produces are used as models for future spacecraft experiments
Comparisons of the North Polar Cap of Mars and the Earth's Northern Hemisphere snow cover
The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the Earth the polar caps have been accurately mapped only since the mid 1960's when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as Earth are intimately linked to global energy balance. In this study data on the year to year variations in the extent of the polar caps of Mars and Earth were assembled and analyzed together with data on annual variations in solar activity to determine if associations exist between these data. It was found that virtually no correlation exists between measurements of Mars north polar cap and solar variability. An inverse relationship was found between variations in the size of the north polar caps of Mars and Earth, although only 6 years of concurrent data were available for comparison
Residual Action of Slow Release Systemic Insecticides on \u3ci\u3eRhopalosiphum Padi\u3c/i\u3e (Homoptera: Aphididae) on Wheat
Slow release formulations of acephate and carbofuran encapsulated in pearl corn starch or corn flour granules were applied to the soil at seeding time of potted \u27Caldwell\u27 wheat in the laboratory. Dosages of these insecticides were adjusted to a standard of IO kg/ha of a 10 10 granular formulation of carbofuran. The residual action of these insecticide treatments against Rhopalosiphum padi were compared with those obtained with that of carbofuran 150 at corresponding dosages and foliar sprays of solutions of acephate (25 10 EC) at 0.2 10 and carbofuran (4F) at 1.25 10, applied 12 d after seedling emergence. The residual action of carbofuran 150, which controlled R. padi since seedling emergence, lasted 28.5 d. The slow release granular formulations of carbofuran began to provide control (\u3e 50 10 aphid mortality) on days 13.3 and 17.9 after seeding. They controlled the insect until days 31.6 and 35.5 after seeding. The two corresponding granular formulations of acephate began to provide control on days 15.0 and 17.0 after seeding and con trolled the aphids until days 31.5 and 32.8 after seeding. The foliar sprays of acephate and carbofuran provided control for 18.3 and 36.2 d from application, respectively. The slow release granular formulations provided control of R. padi, an important vector of barley yellow dwarf virus, during early. stages of wheat development
A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells
Drift-diffusion models that account for the motion of both electronic and
ionic charges are important tools for explaining the hysteretic behaviour and
guiding the development of metal halide perovskite solar cells. Furnishing
numerical solutions to such models for realistic operating conditions is
challenging owing to the extreme values of some of the parameters. In
particular, those characterising (i) the short Debye lengths (giving rise to
rapid changes in the solutions across narrow layers), (ii) the relatively large
potential differences across devices and (iii) the disparity in timescales
between the motion of the electronic and ionic species give rise to significant
stiffness. We present a finite difference scheme with an adaptive time step
that is posed on a non-uniform staggered grid that provides second order
accuracy in the mesh spacing. The method is able to cope with the stiffness of
the system for realistic parameters values whilst providing high accuracy and
maintaining modest computational costs. For example, a transient sweep of a
current-voltage curve can be computed in only a few minutes on a standard
desktop computer.Comment: 22 pages, 8 figure
Self-discharge in bimetallic cells containing alkali metal
Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyt
- …