560 research outputs found
Cluster Percolation and Explicit Symmetry Breaking in Spin Models
Many features of spin models can be interpreted in geometrical terms by means
of the properties of well defined clusters of spins. In case of spontaneous
symmetry breaking, the phase transition of models like the q-state Potts model,
O(n), etc., can be equivalently described as a percolation transition of
clusters. We study here the behaviour of such clusters when the presence of an
external field H breaks explicitly the global symmetry of the Hamiltonian of
the theory. We find that these clusters have still some interesting
relationships with thermal features of the model.Comment: Proceedings of Lattice 2001 (Berlin), 3 pages, 3 figure
A Geometrical Interpretation of Hyperscaling Breaking in the Ising Model
In random percolation one finds that the mean field regime above the upper
critical dimension can simply be explained through the coexistence of infinite
percolating clusters at the critical point. Because of the mapping between
percolation and critical behaviour in the Ising model, one might check whether
the breakdown of hyperscaling in the Ising model can also be intepreted as due
to an infinite multiplicity of percolating Fortuin-Kasteleyn clusters at the
critical temperature T_c. Preliminary results suggest that the scenario is much
more involved than expected due to the fact that the percolation variables
behave differently on the two sides of T_c.Comment: Lattice2002(spin
Green's Functions from Quantum Cluster Algorithms
We show that cluster algorithms for quantum models have a meaning independent
of the basis chosen to construct them. Using this idea, we propose a new method
for measuring with little effort a whole class of Green's functions, once a
cluster algorithm for the partition function has been constructed. To explain
the idea, we consider the quantum XY model and compute its two point Green's
function in various ways, showing that all of them are equivalent. We also
provide numerical evidence confirming the analytic arguments. Similar
techniques are applicable to other models. In particular, in the recently
constructed quantum link models, the new technique allows us to construct
improved estimators for Wilson loops and may lead to a very precise
determination of the glueball spectrum.Comment: 15 pages, LaTeX, with four figures. Added preprint numbe
Critical Droplets and Phase Transitions in Two Dimensions
In two space dimensions, the percolation point of the pure-site clusters of
the Ising model coincides with the critical point T_c of the thermal transition
and the percolation exponents belong to a special universality class. By
introducing a bond probability p_B<1, the corresponding site-bond clusters keep
on percolating at T_c and the exponents do not change, until
p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the
critical percolation exponents switch to the 2D Ising universality class. We
show here that the result is valid for a wide class of bidimensional models
with a continuous magnetization transition: there is a critical bond
probability p_c such that, for any p_B>=p_c, the onset of percolation of the
site-bond clusters coincides with the critical point of the thermal transition.
The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they
suddenly change to the thermal exponents, so that the corresponding clusters
are critical droplets of the phase transition. Our result is based on Monte
Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde
Exact sampling from non-attractive distributions using summary states
Propp and Wilson's method of coupling from the past allows one to efficiently
generate exact samples from attractive statistical distributions (e.g., the
ferromagnetic Ising model). This method may be generalized to non-attractive
distributions by the use of summary states, as first described by Huber. Using
this method, we present exact samples from a frustrated antiferromagnetic
triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss
the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at
low temperature. In particular, we show that such a slowing down can occur in
the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at
http://wol.ra.phy.cam.ac.uk/mackay/exac
Center clusters in the Yang-Mills vacuum
Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory
at finite temperature are analyzed. We show that spatial clusters can be
identified where the local Polyakov loops have values close to the same center
element. For a suitable definition of these clusters the deconfinement
transition can be characterized by the onset of percolation in one of the
center sectors. The analysis is repeated for different resolution scales of the
lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE
Percolation on the average and spontaneous magnetization for q-states Potts model on graph
We prove that the q-states Potts model on graph is spontaneously magnetized
at finite temperature if and only if the graph presents percolation on the
average. Percolation on the average is a combinatorial problem defined by
averaging over all the sites of the graph the probability of belonging to a
cluster of a given size. In the paper we obtain an inequality between this
average probability and the average magnetization, which is a typical extensive
function describing the thermodynamic behaviour of the model
On the non-ergodicity of the Swendsen-Wang-Kotecky algorithm on the kagome lattice
We study the properties of the Wang-Swendsen-Kotecky cluster Monte Carlo
algorithm for simulating the 3-state kagome-lattice Potts antiferromagnet at
zero temperature. We prove that this algorithm is not ergodic for symmetric
subsets of the kagome lattice with fully periodic boundary conditions: given an
initial configuration, not all configurations are accessible via Monte Carlo
steps. The same conclusion holds for single-site dynamics.Comment: Latex2e. 22 pages. Contains 11 figures using pstricks package. Uses
iopart.sty. Final version accepted in journa
Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited
We have performed a high-precision Monte Carlo study of the dynamic critical
behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts
model. We find that the Li-Sokal bound ()
is almost but not quite sharp. The ratio seems to diverge
either as a small power () or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the
LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 Postscript figures. Revised version fixes a
normalization error in \xi (with many thanks to Wolfhard Janke for finding
the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997
Random percolation as a gauge theory
Three-dimensional bond or site percolation theory on a lattice can be
interpreted as a gauge theory in which the Wilson loops are viewed as counters
of topological linking with random clusters. Beyond the percolation threshold
large Wilson loops decay with an area law and show the universal shape effects
due to flux tube quantum fluctuations like in ordinary confining gauge
theories. Wilson loop correlators define a non-trivial spectrum of physical
states of increasing mass and spin, like the glueballs of ordinary gauge
theory. The crumbling of the percolating cluster when the length of one
periodic direction decreases below a critical threshold accounts for the finite
temperature deconfinement, which belongs to 2-D percolation universality class.Comment: 20 pages, 14 figure
- …
