75 research outputs found

    Laryngeal Chondrosarcoma: an Exceptional Localisation of a not Unfrequent Bone Tumor

    Get PDF
    After osteosarcoma, chondrosarcoma is the second most common primary bone tumor accounting for 26% of all malignancies. In the laryngeal region however, chondrosarcomas are rather rare. Only 300 cases are reported in literature. Considering laryngeal chondrosarcoma, about 75% occur in the cricoid cartilage, whereas 20% occur in the thyroid cartilage. In this paper we report a case of thyroidal chondrosarcoma, and based on a thorough literature search we suggest some practical guidelines concerning diagnosis and therapy

    The in ovo CAM-assay as a xenograft model for sarcoma

    Get PDF
    Sarcoma is a very rare disease that is heterogeneous in nature, all hampering the development of new therapies. Sarcoma patients are ideal candidates for personalized medicine after stratification, explaining the current interest in developing a reproducible and low-cost xenotransplant model for this disease. The chick chorioallantoic membrane is a natural immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition, it is easily accessed, manipulated and imaged using optical and fluorescence stereomicroscopy. Histology further allows detailed analysis of heterotypic cellular interactions. This protocol describes in detail the in ovo grafting of the chorioallantoic membrane with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines (Saos-2 and SW1353). The chick survival rates are up to 75%. The model is used to study graft-(viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior. For localized grafting of single cell suspensions, ECM gel provides significant advantages over inert containment materials. The Ki67 proliferation index is related to the distance of the cells from the surface of the CAM and the duration of application on the CAM, the latter determining a time frame for the addition of therapeutic products

    Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis

    Get PDF
    Langerhans cell histiocytosis (LCH) is a disease that can involve one or multiple organ systems characterized by an accumulation of CD1a+ Langerhans-like cells as well as several other myeloid cell types. The precise origin and role of one of these populations, the multinucleated giant cell (MGC), in this disease remains unknown. This work shows that in three different lesional tissues, bone, skin, and lymph node, the MGCs expressed the characteristic osteoclast markers, tartrate-resistant acid phosphatase and vitronectin receptor, as well as the enzymes cathepsin K and matrix metalloproteinase-9. Although, in bone lesions, the osteoclast-like MGCs were only CD68+, in the nonostotic sites, they coexpressed CD1a. The presence of osteoclast-like MGCs may be explained by the production of osteoclast-inducing cytokines such as receptor activator of nuclear factor κB ligand and macrophage colony-stimulating factor by both the CD1a+ LCH cells and T cells in these lesions. As osteoclast-derived enzymes play a major role in tissue destruction, the osteoclast-like nature of MGCs in all LCH lesions makes them a potential target for the treatment of this disease

    Chondrogenic priming at reduced cell density enhances cartilage adhesion of equine allogeneic MSCs : a loading sensitive phenomenon in an organ culture study with 180 explants

    Get PDF
    Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x10(6) vs 1.0 x10(6)). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naive MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage. Copyright (C) 2015 S. Karger AG, Base

    A Proposed Set of Metrics to Reduce Patient Safety Risk From Within the Anatomic Pathology Laboratory

    Get PDF
    Background: Anatomic pathology laboratory workflow consists of 3 major specimen handling processes. Among the workflow are preanalytic, analytic, and postanalytic phases that contain multistep subprocesses with great impact on patient care. A worldwide representation of experts came together to create a system of metrics, as a basis for laboratories worldwide, to help them evaluate and improve specimen handling to reduce patient safety risk. Method: Members of the Initiative for Anatomic Pathology Laboratory Patient Safety (IAPLPS) pooled their extensive expertise to generate a list of metrics highlighting processes with high and low risk for adverse patient outcomes. Results: Our group developed a universal, comprehensive list of 47 metrics for patient specimen handling in the anatomic pathology laboratory. Steps within the specimen workflow sequence are categorized as high or low risk. In general, steps associated with the potential for specimen misidentification correspond to the high-risk grouping and merit greater focus within quality management systems. Primarily workflow measures related to operational efficiency can be considered low risk. Conclusion: Our group intends to advance the widespread use of these metrics in anatomic pathology laboratories to reduce patient safety risk and improve patient care with development of best practices and interlaboratory error reporting programs
    corecore