9 research outputs found

    EST contig-based SSR linkage maps for Malus × domestica cv Royal Gala and an apple scab resistant accession of M. sieversii , the progenitor species of domestic apple

    Get PDF
    Malus sieversii is a progenitor species of domestic apple M.×domestica. Using population "GMAL 4595” of 188 individuals derived from a cross of Royal Gala×PI 613988 (apple scab resistant, M. sieversii), 287 SSR (simple sequence repeats) loci were mapped. Of these SSRs, 80 are published anchors and 207 are newly developed EST (expressed sequence tag) contig-based SSRs, representing 1,630 Malus EST accessions in GenBank. Putative gene functions of these EST contigs are diverse, including regulating plant growth, development and response to environmental stresses. Among the 80 published SSRs, 18 are PI 613988 specific, 38 are common and 24 are Royal Gala specific. Out of the 207 newly developed EST contig-based SSRs, 79 are PI 613988 specific, 45 are common and 83 are Royal Gala specific. These results led to the construction of a M. sieversii map (1,387.0cM) of 180 SSR markers and a Royal Gala map (1,283.4cM) of 190 SSR markers. Mapping of scab resistance was independently conducted in two subsets of population "GMAL 4595” that were inoculated with Ventura inaequalis races (1) and (2), respectively. In combination with the two major resistance reactions Chl (chlorotic lesions) and SN (stellate necrosis) to each race, four subsets of resistance data, i.e., Chl/race (1), SN/race (1), Chl/race (2) and SN/race (2), were constituted and analyzed, leading to four resistance loci mapped to the linkage group 2 of PI 613988; SNR1 (stellate necrosis resistance to race (1)) and SNR2 are tightly linked in a region of known scab resistance genes, and ChlR1 (Chlorotic lesion resistance to race (1)) and ChlR2 are also linked tightly but in a region without known scab resistance genes. The utility of the two linkage maps, the new EST contig-based markers and M. sieversii as sources of apple scab resistance are discusse

    Volatile Profiles of Members of the USDA Geneva Malus Core Collection: Utility in Evaluation of a Hypothesized Biosynthetic Pathway for Esters Derived from 2‑Methylbutanoate and 2‑Methylbutan-1-ol

    No full text
    The volatile ester and alcohol profiles of ripening apple fruit from 184 germplasm lines in the USDA Malus Germplasm Repository at the New York Agricultural Experiment Station in Geneva, NY, USA, were evaluated. Cluster analysis suggested biochemical relationships exist between several ester classes. A strong linkage was revealed between 2-methylbutanoate, propanoate, and butanoate esters, suggesting the influence of the recently proposed “citramalic acid pathway” in apple fruit. Those lines with a high content of esters formed from 2-methylbutan-1-ol and 2-methylbutanoate (2MB) relative to straight-chain (SC) esters (high 2MB/SC ratio) exhibited a marked increase in isoleucine and citramalic acid during ripening, but those lines with a low content did not. Thus, the data were consistent with the existence of the hypothesized citramalic acid pathway and suggest that the Geneva <i>Malus</i> Germplasm Repository, appropriately used, could be helpful in expanding our understanding of mechanisms for fruit volatile synthesis and other aspects of secondary metabolism

    Volatile Profiles of Members of the USDA Geneva Malus Core Collection: Utility in Evaluation of a Hypothesized Biosynthetic Pathway for Esters Derived from 2‑Methylbutanoate and 2‑Methylbutan-1-ol

    No full text
    The volatile ester and alcohol profiles of ripening apple fruit from 184 germplasm lines in the USDA Malus Germplasm Repository at the New York Agricultural Experiment Station in Geneva, NY, USA, were evaluated. Cluster analysis suggested biochemical relationships exist between several ester classes. A strong linkage was revealed between 2-methylbutanoate, propanoate, and butanoate esters, suggesting the influence of the recently proposed “citramalic acid pathway” in apple fruit. Those lines with a high content of esters formed from 2-methylbutan-1-ol and 2-methylbutanoate (2MB) relative to straight-chain (SC) esters (high 2MB/SC ratio) exhibited a marked increase in isoleucine and citramalic acid during ripening, but those lines with a low content did not. Thus, the data were consistent with the existence of the hypothesized citramalic acid pathway and suggest that the Geneva <i>Malus</i> Germplasm Repository, appropriately used, could be helpful in expanding our understanding of mechanisms for fruit volatile synthesis and other aspects of secondary metabolism

    The role of Schmidt 'Antonovka' in apple scab resistance breeding

    No full text
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699International audience'Antonovka' has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of 'Antonovka'. Most of the 'Antonovka' scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt 'Antonovka' and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified "common 'Antonovka' " as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major 'Antonovka' scab resistance genes mapped to date are located either very close to Rvi6, or about 20-25 cM above it, but their identities need further elucidation. The presence of the 139 bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the 'Antonovka' germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from 'Antonovka', such as, 'Freedom', 'Burgundy' and 'Angold', are discussed. The parentage of 'Reglindis' is unclear, but the cultivar commercialised as 'Reglindis' was confirmed to be an Rvi6 cultivar

    The role of Schmidt 'Antonovka' in apple scab resistance breeding

    Get PDF
    'Antonovka' has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of 'Antonovka'. Most of the 'Antonovka' scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt 'Antonovka' and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified "common 'Antonovka' " as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major 'Antonovka' scab resistance genes mapped to date are located either very close to Rvi6, or about 20-25 cM above it, but their identities need further elucidation. The presence of the 139 bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the 'Antonovka' germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from 'Antonovka', such as, 'Freedom', 'Burgundy' and 'Angold', are discussed. The parentage of 'Reglindis' is unclear, but the cultivar commercialised as 'Reglindis' was confirmed to be an Rvi6 cultivar
    corecore