2,732 research outputs found

    Random walks and random fixed-point free involutions

    Full text link
    A bijection is given between fixed point free involutions of {1,2,...,2N}\{1,2,...,2N\} with maximum decreasing subsequence size 2p2p and two classes of vicious (non-intersecting) random walker configurations confined to the half line lattice points l1l \ge 1. In one class of walker configurations the maximum displacement of the right most walker is pp. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Symmetrized models of last passage percolation and non-intersecting lattice paths

    Get PDF
    It has been shown that the last passage time in certain symmetrized models of directed percolation can be written in terms of averages over random matrices from the classical groups U(l)U(l), Sp(2l)Sp(2l) and O(l)O(l). We present a theory of such results based on non-intersecting lattice paths, and integration techniques familiar from the theory of random matrices. Detailed derivations of probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Andreev reflection from a topological superconductor with chiral symmetry

    Get PDF
    It was pointed out by Tewari and Sau that chiral symmetry (H -> -H if e h) of the Hamiltonian of electron-hole (e-h) excitations in an N-mode superconducting wire is associated with a topological quantum number Q\in\mathbb{Z} (symmetry class BDI). Here we show that Q=Tr(r_{he}) equals the trace of the matrix of Andreev reflection amplitudes, providing a link with the electrical conductance G. We derive G=(2e^2/h)|Q| for |Q|=N,N-1, and more generally provide a Q-dependent upper and lower bound on G. We calculate the probability distribution P(G) for chaotic scattering, in the circular ensemble of random-matrix theory, to obtain the Q-dependence of weak localization and mesoscopic conductance fluctuations. We investigate the effects of chiral symmetry breaking by spin-orbit coupling of the transverse momentum (causing a class BDI-to-D crossover), in a model of a disordered semiconductor nanowire with induced superconductivity. For wire widths less than the spin-orbit coupling length, the conductance as a function of chemical potential can show a sequence of 2e^2/h steps - insensitive to disorder.Comment: 10 pages, 5 figures. Corrected typo (missing square root) in equations A13 and A1

    Variance Calculations and the Bessel Kernel

    Full text link
    In the Laguerre ensemble of N x N (positive) hermitian matrices, it is of interest both theoretically and for applications to quantum transport problems to compute the variance of a linear statistic, denoted var_N f, as N->infinity. Furthermore, this statistic often contains an additional parameter alpha for which the limit alpha->infinity is most interesting and most difficult to compute numerically. We derive exact expressions for both lim_{N->infinity} var_N f and lim_{alpha->infinity}lim_{N->infinity} var_N f.Comment: 7 pages; resubmitted to make postscript compatibl

    Finite N Fluctuation Formulas for Random Matrices

    Full text link
    For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic j=1N(xj)\sum_{j=1}^N (x_j - ) is computed exactly and shown to satisfy a central limit theorem as NN \to \infty. For the circular random matrix ensemble the p.d.f.'s for the linear statistics 12j=1N(θjπ){1 \over 2} \sum_{j=1}^N (\theta_j - \pi) and j=1Nlog2sinθj/2- \sum_{j=1}^N \log 2|\sin \theta_j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem as NN \to \infty.Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty

    Applications and generalizations of Fisher-Hartwig asymptotics

    Full text link
    Fisher-Hartwig asymptotics refers to the large nn form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above TcT_c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.Comment: 25 page

    The impact of freight transport capacity limitations on supply chain dynamics

    Get PDF
    We investigate how capacity limitations in the transportation system affect the dynamic behaviour of supply chains. We are interested in the more recently defined, 'backlash' effect. Using a system dynamics simulation approach, we replicate the well-known Beer Game supply chain for different transport capacity management scenarios. The results indicate that transport capacity limitations negatively impact on inventory and backlog costs, although there is a positive impact on the 'backlash' effect. We show that it is possible for both backlog and inventory to simultaneous occur, a situation which does not arise with the uncapacitated scenario. A vertical collaborative approach to transport provision is able to overcome such a trade-off. © 2013 Taylor & Francis

    Scaling limit of vicious walks and two-matrix model

    Full text link
    We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a system of nonintersecting Brownian motions. The spatial distribution of NN particles is studied and it is described by use of the probability density function of eigenvalues of N×NN \times N Gaussian random matrices. The particle distribution depends on the ratio of the observation time tt and the time interval TT in which the nonintersecting condition is imposed. As t/Tt/T is going on from 0 to 1, there occurs a transition of distribution, which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the particle distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
    corecore