2,732 research outputs found
Random walks and random fixed-point free involutions
A bijection is given between fixed point free involutions of
with maximum decreasing subsequence size and two classes of vicious
(non-intersecting) random walker configurations confined to the half line
lattice points . In one class of walker configurations the maximum
displacement of the right most walker is . Because the scaled distribution
of the maximum decreasing subsequence size is known to be in the soft edge GOE
(random real symmetric matrices) universality class, the same holds true for
the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page
Growth models, random matrices and Painleve transcendents
The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure
Symmetrized models of last passage percolation and non-intersecting lattice paths
It has been shown that the last passage time in certain symmetrized models of
directed percolation can be written in terms of averages over random matrices
from the classical groups , and . We present a theory of
such results based on non-intersecting lattice paths, and integration
techniques familiar from the theory of random matrices. Detailed derivations of
probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Andreev reflection from a topological superconductor with chiral symmetry
It was pointed out by Tewari and Sau that chiral symmetry (H -> -H if e
h) of the Hamiltonian of electron-hole (e-h) excitations in an N-mode
superconducting wire is associated with a topological quantum number
Q\in\mathbb{Z} (symmetry class BDI). Here we show that Q=Tr(r_{he}) equals the
trace of the matrix of Andreev reflection amplitudes, providing a link with the
electrical conductance G. We derive G=(2e^2/h)|Q| for |Q|=N,N-1, and more
generally provide a Q-dependent upper and lower bound on G. We calculate the
probability distribution P(G) for chaotic scattering, in the circular ensemble
of random-matrix theory, to obtain the Q-dependence of weak localization and
mesoscopic conductance fluctuations. We investigate the effects of chiral
symmetry breaking by spin-orbit coupling of the transverse momentum (causing a
class BDI-to-D crossover), in a model of a disordered semiconductor nanowire
with induced superconductivity. For wire widths less than the spin-orbit
coupling length, the conductance as a function of chemical potential can show a
sequence of 2e^2/h steps - insensitive to disorder.Comment: 10 pages, 5 figures. Corrected typo (missing square root) in
equations A13 and A1
Variance Calculations and the Bessel Kernel
In the Laguerre ensemble of N x N (positive) hermitian matrices, it is of
interest both theoretically and for applications to quantum transport problems
to compute the variance of a linear statistic, denoted var_N f, as N->infinity.
Furthermore, this statistic often contains an additional parameter alpha for
which the limit alpha->infinity is most interesting and most difficult to
compute numerically. We derive exact expressions for both lim_{N->infinity}
var_N f and lim_{alpha->infinity}lim_{N->infinity} var_N f.Comment: 7 pages; resubmitted to make postscript compatibl
Finite N Fluctuation Formulas for Random Matrices
For the Gaussian and Laguerre random matrix ensembles, the probability
density function (p.d.f.) for the linear statistic
is computed exactly and shown to satisfy a central limit theorem as . For the circular random matrix ensemble the p.d.f.'s for the linear
statistics and are calculated exactly by using a constant term identity
from the theory of the Selberg integral, and are also shown to satisfy a
central limit theorem as .Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty
Applications and generalizations of Fisher-Hartwig asymptotics
Fisher-Hartwig asymptotics refers to the large form of a class of
Toeplitz determinants with singular generating functions. This class of
Toeplitz determinants occurs in the study of the spin-spin correlations for the
two-dimensional Ising model, and the ground state density matrix of the
impenetrable Bose gas, amongst other problems in mathematical physics. We give
a new application of the original Fisher-Hartwig formula to the asymptotic
decay of the Ising correlations above , while the study of the Bose gas
density matrix leads us to generalize the Fisher-Hartwig formula to the
asymptotic form of random matrix averages over the classical groups and the
Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our
generalizations is that they extend to Hankel determinants the Fisher-Hartwig
asymptotic form known for Toeplitz determinants.Comment: 25 page
The impact of freight transport capacity limitations on supply chain dynamics
We investigate how capacity limitations in the transportation system affect the dynamic behaviour of supply chains. We are interested in the more recently defined, 'backlash' effect. Using a system dynamics simulation approach, we replicate the well-known Beer Game supply chain for different transport capacity management scenarios. The results indicate that transport capacity limitations negatively impact on inventory and backlog costs, although there is a positive impact on the 'backlash' effect. We show that it is possible for both backlog and inventory to simultaneous occur, a situation which does not arise with the uncapacitated scenario. A vertical collaborative approach to transport provision is able to overcome such a trade-off. © 2013 Taylor & Francis
Scaling limit of vicious walks and two-matrix model
We consider the diffusion scaling limit of the one-dimensional vicious walker
model of Fisher and derive a system of nonintersecting Brownian motions. The
spatial distribution of particles is studied and it is described by use of
the probability density function of eigenvalues of Gaussian random
matrices. The particle distribution depends on the ratio of the observation
time and the time interval in which the nonintersecting condition is
imposed. As is going on from 0 to 1, there occurs a transition of
distribution, which is identified with the transition observed in the
two-matrix model of Pandey and Mehta. Despite of the absence of matrix
structure in the original vicious walker model, in the diffusion scaling limit,
accumulation of contact repulsive interactions realizes the correlated
distribution of eigenvalues in the multimatrix model as the particle
distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
- …