35 research outputs found
The effect of swimsuit resistance on freestyle swimming race time.
It is known that swimming equipment (suit, cap and goggles) can affect the total resistance of a swimmer, and therefore impact the resulting swimming speed and race time. After the 2009 swimming world championships (WC) the international swimming federation (FINA) banned a specific type of full body suit, which resulted in an increase in race times for subsequent WC events. This study proposes that the 2009 suits provided a reduction in swimming resistance and aims to quantify this resistance reduction for male and female freestyle events. Due to the practical difficulties of testing a large sample of swimmers a simulation approach is adopted. To quantify the race time improvement that the 2009 suits provided, an equivalent 2009 “no-suit” dataset is created, incorporating the general trend of improving swimming performance over time, and compared to the actual 2009 times. A full race simulation is developed where the start, turn, underwater and surface swimming phases are captured. Independent resistance models are used for surface and underwater swimming; coupled with a leg propulsion model for underwater undulatory swimming and freestyle flutter kick, and a single element arm model to simulate freestyle arm propulsion. A validation is performed to ensure the simulation captures the change in swimming speed with changes to resistance and is found to be within 5% of reality. Race times for an equivalent “no-suit” 2009 situation are simulated and the total resistance reduced to achieve the actual 2009 race times. An average resistance reduction of 4.8% provided by the 2009 suits is identified. A factor of 0.47 ± 10%, to convert resistance changes to freestyle race time changes is determine
Global sensitivity analysis of stochastic computer models with joint metamodels
The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong
Optimization using surrogate models and partially converged computational fluid dynamics simulations
Efficient methods for global aerodynamic optimization using computational fluid dynamics simulations should aim to reduce both the time taken to evaluate design concepts and the number of evaluations needed for optimization. This paper investigates methods for improving such efficiency through the use of partially converged computational fluid dynamics results. These allow surrogate models to be built in a fraction of the time required for models based on converged results. The proposed optimization methodologies increase the speed of convergence to a global optimum while the computer resources expended in areas of poor designs are reduced. A strategy which combines a global approximation built using partially converged simulations with expected improvement updates of converged simulations is shown to outperform a traditional surrogate-based optimization
Multi-fidelity design optimisation of a transonic compressor rotor
This paper demonstrates the application of Kriging based approximations to the aerodynamic shape optimisation of a transonic compressor rotor where multiple fidelities of analysis are available. An extension to the co-Kriging method is implemented, and attention is paid to the efficient construction of the approximate models. The initial data sample within each level of the model is selected using space-filling designs, and the covariance structure of the co-Kriging models is obtained using a maximum likelihood estimation based on gradient optimisation with adjoint functions. An efficient leave-one-out cross-validation method is used to estimate model accuracy and is used to guide initial model refinement
Efficient global aerodynamic optimisation using expensive computational fluid dynamics simulations
The expense of high fidelity computational fluid dynamics, in terms of time and amount of computing resources required, excludes such methods from the early stages of aircraft design. It is only in the early, conceptual, stage of aircraft development where a wide range of designs are considered and global, rather than local, optimisation can play a key role. This thesis deals with methods which may allow high cost computer simulations to be used within a global optimisation design process. The first half of the thesis concentrates on the use of surrogate modeling of the optimisation design space, which allows cheap approximations to be used in lieu of expensive computer simulations. The process is automated and present statistical methods are modified to accommodate problems associated with the simulation of fluid flow and uncertainty within an automated system. The re-interpolation of a regression model of noisy data is presented as a method of improving convergence towards a global optimum. The second half of the thesis develops methods of using partially converged computational fluid dynamics simulations within a surrogate modelling optimisation process. Significant time savings are made possible by reducing computational effort directed at producing a surrogate for regions of poor designs and concentrating resources on modelling regions of promising designs
Shape optimization of the carotid artery bifurcation
A parametric CAD model of the human carotid artery bifurcation is employed in an initial exploration of the response of shear stress to the variation of the angle of the internal carotid artery and the width of the sinus bulb. Design of experiment and response surface technologies are harnessed for the first time in such an application with the aim of developing a better understanding of the relationship between geometry (anatomy) and sites of arterial disease