28 research outputs found

    Editorial Preface

    Get PDF
    JODE purposes to deliver international readers with high quality peer-reviewed academic articles on a wide variety of issues related to open and distance learning, in areas such as technology-assisted learning, computer based training, computer-aided instruction or computer assisted instruction, internet-based training, web-based training, online training, virtual training, virtual learning environments, m-learning, digital education, education on social networking, massive online open courses, game-based learning, active learning, content design, e-assessment, mobile applications, e-video, the quality of open and distance education and accreditation etc. Document type: Part of book or chapter of boo

    A new method for the determination of very small Γγ partial widths

    Get PDF
    We present a new method for the measurement of very small Γγ partial width that is important for the synthesis of elements in astrophysics. The method is based on the simultaneous detection of scattered beam, residual nucleus and decay γ rays. This method is optimized for the use of the CHIMERA detector at LNS. Experimental details are described

    Contrasting properties of particle-particle and hole-hole excitations in ²⁰⁶Tl and ²¹⁰Bi nuclei

    Get PDF
    A complete-spectroscopy investigation of low-lying, low-spin states in the one-proton-hole and one-neutron-hole nucleus 206Tl has been performed by using thermal neutron capture and γ-coincidence technique with the FIPPS Ge array at ILL Grenoble. The new experimental results, together with data for the one-proton-particle and one-neutron-particle nucleus 210Bi (taken from a previous study done at ILL in the EXILL campaign), allowed for an extensive comparison with predictions of shell-model calculations performed with realistic interactions. No phenomenological adjustments were introduced in the calculations. In 210Bi, state energies, transition multipolarities and decay branchings agree well with theory for the three well separated multiplets of states which dominate the low-lying excitations. On the contrary, in 206Tl significant discrepancies are observed: in the same energy region, six multiplets were identified, with a significant mixing among them being predicted, as a consequence of the smaller energy separation between the active orbitals. The discrepancies in 206Tl are attributed to the larger uncertainties in the determination of the off-diagonal matrix elements of the realistic shell-model interaction with respect to the calculated diagonal matrix elements, the only ones playing a major role in the case of 210Bi. The work points to the need of more advanced approaches in the construction of the realistic interactions

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus ¹³³Sb

    Get PDF
    The γ-ray decay of excited states of the one-valence-proton nucleus ¹³³Sb has been studied using cold-neutron induced fission of ²³⁵U and ²⁴¹Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr₃(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus ¹³²Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin
    corecore