5,977 research outputs found

    Stainless steel 301 and Inconel 718 hydrogen embrittlement

    Get PDF
    Conditions and results of tensile tests of 26 Inconel 718 and four cryoformed stainless steel specimens are presented. Conclusions determine maximum safe hydrogen operating pressure for cryogenic pressure vessels and provide definitive information concerning flaw growth characteristics under the most severe temperature and pressure condition

    State-sponsored Pensions for Private-Sector Workers: The Case for Pooled Annuities and Tontines

    Get PDF
    This paper explains how state governments could create new low-cost lifetime assurance funds to help provide retirement income security for millions of private-sector workers who currently lack pension coverage. Basically, an assurance fund operates like a mutual fund held within a defined contribution plan, but with the added features of mortality pooling and fully-funded lifetime payouts. As we envision them, assurance funds would be offered as annuity-like investment options on the new investment platforms being created by states like Oregon, California, and Maryland that offer their citizens the opportunity to participate in state-sponsored retirement savings plans. Adding an assurance fund could effectively turn these retirement savings plans into lifetime pensions. To ensure their sustainability, assurance funds would operate under a strict budget constraint and be organized as either tontines or pooled annuities

    Polarization of X-ray lines from galaxy clusters and elliptical galaxies - a way to measure tangential component of gas velocity

    Full text link
    We study the impact of gas motions on the polarization of bright X-ray emission lines from the hot intercluster medium (ICM). The polarization naturally arises from resonant scattering of emission lines owing to a quadrupole component in the radiation field produced by a centrally peaked gas density distribution. If differential gas motions are present then a photon emitted in one region of the cluster will be scattered in another region only if their relative velocities are small enough and the Doppler shift of the photon energy does not exceed the line width. This affects both the degree and the direction of polarization. The changes in the polarization signal are in particular sensitive to the gas motions perpendicular to the line of sight. We calculate the expected degree of polarization for several patterns of gas motions, including a slow inflow expected in a simple cooling flow model and a fast outflow in an expanding spherical shock wave. In both cases, the effect of non-zero gas velocities is found to be minor. We also calculate the polarization signal for a set of clusters, taken from large-scale structure simulations and evaluate the impact of the gas bulk motions on the polarization signal. We argue that the expected degree of polarization is within reach of the next generation of space X-ray polarimeters.Comment: 25 pages, 18 figures, accepted to MNRA

    CHANDRA observations of the NGC 1550 galaxy group -- implication for the temperature and entropy profiles of 1 keV galaxy groups

    Full text link
    We present a detailed \chandra study of the galaxy group NGC 1550. For its temperature (1.37±\pm0.01 keV) and velocity dispersion (\sim 300 km s1^{-1}), the NGC 1550 group is one of the most luminous known galaxy groups (Lbol_{\rm bol} = 1.65×1043\times10^{43} erg s1^{-1} within 200 kpc, or 0.2 \rv). We find that within 60\sim 60 kpc, where the gas cooling time is less than a Hubble time, the gas temperature decreases continuously toward the center, implying the existence of a cooling core. The temperature also declines beyond \sim 100 kpc (or 0.1 \rv). There is a remarkable similarity of the temperature profile of NGC 1550 with those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07 - 0.1 \rv, while in hot clusters the decline begins at or beyond 0.2 \rv. Thus, there are at least some 1 keV groups that have significantly different temperature profiles from those of hot clusters, which may reflect the role of non-gravitational processes in ICM/IGM evolution. NGC 1550 has no isentropic core in its entropy profile, in contrast to the predictions of `entropy-floor' simulations. We compare the scaled entropy profiles of three 1 keV groups (including NGC 1550) and three 2 - 3 keV groups. The scaled entropy profiles of 1 keV groups show much larger scatter than those of hotter systems, which implies varied pre-heating levels. We also discuss the mass content of the NGC 1550 group and the abundance profile of heavy elements.Comment: emulateapj5.sty, 18 pages, 11 figures (including 4 color), to appear in ApJ, v598, n1, 20 Nov 200

    The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275

    Full text link
    We present ALMA Band 6 observations of the CO(2-1), HCN(3-2), and HCO+^{+}(3-2) lines in the nearby radio galaxy / brightest cluster galaxy (BCG) of NGC 1275 with the spatial resolution of 20\sim20 pc. In the previous observations, CO(2-1) emission was detected as radial filaments lying in the east-west direction. We resolved the inner filament and found that the filament cannot be represented by a simple infalling stream both morphologically and kinematically. The observed complex nature of the filament resembles the cold gas structure predicted by recent numerical simulations of cold chaotic accretion. A crude estimate suggests that the accretion rate of the cold gas can be higher than that of hot gas. Within the central 100 pc, we detected a rotational disk of the molecular gas whose mass is \sim10^{8} M_{\sun}. This is the first evidence of the presence of massive cold gas disk on this spatial scale for BCGs. The disk rotation axis is approximately consistent with the axis of the radio jet on subpc scales. This probably suggests that the cold gas disk is physically connected to the innermost accretion disk which is responsible for jet launching. We also detected absorption features in the HCN(3-2) and HCO+^{+}(3-2) spectra against the radio continuum emission mostly radiated by 1.2\sim1.2-pc size jet. The absorption features are blue-shifted from the systemic velocity by \sim300-600~km~s1^{-1}, which suggests the presence of outflowing gas from the active galactic nucleus (AGN). We discuss the relation of the AGN feeding with cold accretion, the origin of blue-shifted absorption, and estimate of black hole mass using the molecular gas dynamics.Comment: Version 2 (accepted version). 18 pages, 16 figures. Accepted for publication in Ap

    The Use of Routine Antenatal Anti-D Prophylaxis for Rhesus Negative Women

    Get PDF
    corecore