7,515 research outputs found
Towards a Semantic Search Engine for Scientific Articles
Because of the data deluge in scientific publication, finding relevant
information is getting harder and harder for researchers and readers. Building
an enhanced scientific search engine by taking semantic relations into account
poses a great challenge. As a starting point, semantic relations between
keywords from scientific articles could be extracted in order to classify
articles. This might help later in the process of browsing and searching for
content in a meaningful scientific way. Indeed, by connecting keywords, the
context of the article can be extracted. This paper aims to provide ideas to
build such a smart search engine and describes the initial contributions
towards achieving such an ambitious goal
L'outillage de pierre des premiers mélanésiens (Nouvelle Calédonie) : une approche technologique
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning
Intrinsically motivated spontaneous exploration is a key enabler of
autonomous lifelong learning in human children. It enables the discovery and
acquisition of large repertoires of skills through self-generation,
self-selection, self-ordering and self-experimentation of learning goals. We
present an algorithmic approach called Intrinsically Motivated Goal Exploration
Processes (IMGEP) to enable similar properties of autonomous or self-supervised
learning in machines. The IMGEP algorithmic architecture relies on several
principles: 1) self-generation of goals, generalized as fitness functions; 2)
selection of goals based on intrinsic rewards; 3) exploration with incremental
goal-parameterized policy search and exploitation of the gathered data with a
batch learning algorithm; 4) systematic reuse of information acquired when
targeting a goal for improving towards other goals. We present a particularly
efficient form of IMGEP, called Modular Population-Based IMGEP, that uses a
population-based policy and an object-centered modularity in goals and
mutations. We provide several implementations of this architecture and
demonstrate their ability to automatically generate a learning curriculum
within several experimental setups including a real humanoid robot that can
explore multiple spaces of goals with several hundred continuous dimensions.
While no particular target goal is provided to the system, this curriculum
allows the discovery of skills that act as stepping stone for learning more
complex skills, e.g. nested tool use. We show that learning diverse spaces of
goals with intrinsic motivations is more efficient for learning complex skills
than only trying to directly learn these complex skills
Adversarial Attacks on Deep Neural Networks for Time Series Classification
Time Series Classification (TSC) problems are encountered in many real life
data mining tasks ranging from medicine and security to human activity
recognition and food safety. With the recent success of deep neural networks in
various domains such as computer vision and natural language processing,
researchers started adopting these techniques for solving time series data
mining problems. However, to the best of our knowledge, no previous work has
considered the vulnerability of deep learning models to adversarial time series
examples, which could potentially make them unreliable in situations where the
decision taken by the classifier is crucial such as in medicine and security.
For computer vision problems, such attacks have been shown to be very easy to
perform by altering the image and adding an imperceptible amount of noise to
trick the network into wrongly classifying the input image. Following this line
of work, we propose to leverage existing adversarial attack mechanisms to add a
special noise to the input time series in order to decrease the network's
confidence when classifying instances at test time. Our results reveal that
current state-of-the-art deep learning time series classifiers are vulnerable
to adversarial attacks which can have major consequences in multiple domains
such as food safety and quality assurance.Comment: Accepted at IJCNN 201
- …
