1,329 research outputs found

    Mass transport and turbulence in gravitationally unstable disk galaxies. II. the effects of star formation feedback

    Get PDF
    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ~1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies' star formation rates by a factor of ~5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ~ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times

    Mixing and transport of metals by gravitational instability-driven turbulence in galactic discs

    Get PDF
    Metal production in galaxies traces star formation, and is highly concentrated towards the centres of galactic discs. This suggests that galaxies should have inhomogeneous metal distributions with strong radial gradients, but observations of present-day galaxies show only shallow gradients with little azimuthal variation, implying the existence of a redistribution mechanism. We study the role of gravitational instability-driven turbulence as a mixing mechanism by simulating an isolated galactic disc at high resolution, including metal fields treated as passive scalars. Since any cylindrical field can be decomposed into a sum of Fourier–Bessel basis functions, we set up initial metal fields characterized by these functions and study how different modes mix. We find both shear and turbulence contribute to mixing, but the mixing strongly depends on the symmetries of the mode. Non-axisymmetric modes have decay times smaller than the galactic orbital period because shear winds them up to small spatial scales, where they are erased by turbulence. The decay time-scales for axisymmetric modes are much greater, though for all but the largest scale inhomogeneities the mixing time-scale is still short enough to erase chemical inhomogeneities over cosmological times. These different time-scales provide an explanation for why galaxies retain metallicity gradients while there is almost no variation at a fixed radius. Moreover, the comparatively long time-scales required for mixing axisymmetric modes may explain the greater diversity of metallicity gradients observed in high redshift galaxies as compared to local ones: these systems have not yet reached equilibrium between metal production and diffusion

    The Galactic Interstellar Object Population: A Framework for Prediction and Inference

    Full text link
    The Milky Way is thought to host a huge population of interstellar objects (ISOs), numbering approximately 1015pc310^{15}\mathrm{pc}^{-3} around the Sun, which are formed and shaped by a diverse set of processes ranging from planet formation to galactic dynamics. We define a novel framework: firstly to predict the properties of this Galactic ISO population by combining models of processes across planetary and galactic scales, and secondly to make inferences about the processes modelled, by comparing the predicted population to what is observed. We predict the spatial and compositional distribution of the Galaxy's population of ISOs by modelling the Galactic stellar population with data from the APOGEE survey and combining this with a protoplanetary disk chemistry model. Selecting ISO water mass fraction as an example observable quantity, we evaluate its distribution both at the position of the Sun and averaged over the Galactic disk; our prediction for the Solar neighbourhood is compatible with the inferred water mass fraction of 2I/Borisov. We show that the well-studied Galactic stellar metallicity gradient has a corresponding ISO compositional gradient. We also demonstrate the inference part of the framework by using the current observed ISO composition distribution to constrain the parent star metallicity dependence of the ISO production rate. This constraint, and other inferences made with this framework, will improve dramatically as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) progresses and more ISOs are observed. Finally, we explore generalisations of this framework to other Galactic populations, such as that of exoplanets.Comment: Accepted to A

    Cellular plasticity in liver regeneration - spotlight on cholangiocytes

    Get PDF
    The liver\u27s remarkable capacity to self‐repair and regenerate following tissue injury has been recognized since the ancient Greek myth of Prometheus. However, the diverse potential sources of this regenerative capacity have been an area of hot debate, and only recently have studies started to unravel the actual degree of hepatic cell plasticity. Deng et al. established through lineage tracing experiments using a double‐fluorescent reporter system that biliary epithelial cells significantly contributed to hepatocyte regeneration in two murine chronic liver injury models. Furthermore, during the cholangiocyte‐to‐hepatocyte conversion, biphenotypic cells were identified in both mouse models and human cirrhotic livers. Following analysis of liver progenitor cell markers and mature cholangiocytes, the authors concluded that cholangiocytes directly lineage‐converted to hepatocytes without a progenitor cell intermediate and suggested these biphenotypic cells as potential cellular sources for future therapeutic transplantation strategies
    corecore