61,542 research outputs found

    Observations of Galactic Gamma-Ray Sources with H.E.S.S

    Full text link
    H.E.S.S. results from the first three years of nominal operation are presented. Among the many exciting measurements that have been made, most gamma-ray sources are of Galactic origin. I will concentrate here on an overview of Galactic observations and summarise and discuss observations of selected objects of the different source types.Comment: 13 pages, 10 figures, based on a talk presented at the workshop 'Energy Budget in the High Energy Universe', Kashiwa, Japan 22 - 24 February 200

    Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory

    Get PDF
    The Fluorescence Detector of the Pierre Auger Observatory measures the atmospheric depth, XmaxX_{max}, where the longitudinal profile of the high energy air showers reaches its maximum. This is sensitive to the nuclear mass composition of the cosmic rays. Due to its hybrid design, the Pierre Auger Observatory also provides independent experimental observables obtained from the Surface Detector for the study of the nuclear mass composition. We present XmaxX_{max}-distributions and an update of the average and RMS values in different energy bins and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models. We also present the results of the composition-sensitive parameters derived from the ground level component.Comment: Proceedings of the 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2011, Munich, German

    Jet-hadron correlations in STAR

    Full text link
    Advancements in full jet reconstruction have made it possible to use jets as triggers in azimuthal angular correlations to study the modification of hard-scattered partons in the medium created in ultrarelativistic heavy-ion collisions. This increases the range of parton energies accessible in these analyses and improves the signal-to-background ratio compared to dihadron correlations. Results of a systematic study of jet-hadron correlations in central Au-Au collisions at sqrt(s_NN) = 200 GeV are indicative of a broadening and softening of jets which interact with the medium. Furthermore, jet-hadron correlations suggest that the suppression of the associated hadron yield at high-pT is balanced in large part by low-pT enhancement.Comment: 4 pages, 2 figures, proceedings for Quark Matter 201

    Is "just-so" Higgs splitting needed for t-b-\tau Yukawa unified SUSY GUTs?

    Full text link
    Recent renormalization group calculations of the sparticle mass spectrum in the Minimal Supersymmetric Standard Model (MSSM) show that t-b-\tau Yukawa coupling unification at M_{\rm GUT} is possible when the mass spectra follow the pattern of a radiatively induced inverted scalar mass hierarchy. The calculation is entirely consistent with expectations from SO(10) SUSY GUT theories, with one exception: it seems to require MSSM Higgs soft term mass splitting at M_{\rm GUT}, dubbed "just-so Higgs splitting" (HS) in the literature, which apparently violates the SO(10) gauge symmetry. Here, we investigate three alternative effects: {\it i}). SO(10) D-term splitting, {\it ii}). inclusion of right hand neutrino in the RG calculation, and {\it iii}). first/third generation scalar mass splitting. By combining all three effects (the DR3 model), we find t-b-\tau Yukawa unification at M_{\rm GUT} can be achieved at the 2.5% level. In the DR3 case, we expect lighter (and possibly detectable) third generation and heavy Higgs scalars than in the model with HS. In addition, the light bottom squark in DR3 should be dominantly a right state, while in the HS model, it is dominantly a left state.Comment: 21 pages with 11 .eps figures; revised version added two reference

    Kinetics of spin coherence of electrons in an undoped semiconductor quantum well

    Full text link
    We study the kinetics of spin coherence of optically excited electrons in an undoped insulating ZnSe/Zn1−x_{1-x}Cdx_xSe quantum well under moderate magnetic fields in the Voigt configuration. After clarifying the optical coherence and the spin coherence, we build the kinetic Bloch equations and calculate dephasing and relaxation kinetics of laser pulse excited plasma due to statically screened Coulomb scattering and electron hole spin exchange. We find that the Coulomb scattering can not cause the spin dephasing, and that the electron-hole spin exchange is the main mechanism of the spin decoherence. Moreover the beat frequency in the Faraday rotation angle is determined mainly by the Zeeman splitting, red shifted by the Coulomb scattering and the electron hole spin exchange. Our numerical results are in agreement with experiment findings. A possible scenario for the contribution of electron-hole spin exchange to the spin dephasing of the nn-doped material is also proposed.Comment: 12 pages, RevTex, 11 figures, scheduled to publish in PRB Jan. 15, 200
    • 

    corecore