8,905 research outputs found

    Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

    Full text link
    We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of gg-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Diluted Random Fields in Mixed Cyanide Crystals

    Full text link
    A percolation argument and a dilute compressible random field Ising model are used to present a simple model for mixed cyanide crystals. The model reproduces quantitatively several features of the phase diagrams altough some crude approximations are made. In particular critical thresholds x_c at which ferroelastic first order transitions disappear, are calculated. Moreover, transitions are found to remain first order down to x_c for all mixtures except for bromine, for which the transition becomes continuous. All the results are in full agreement with experimental data.Comment: 8 pages, late

    An Orthogonal Modular Approach to Macromonomers Using Clickable Cyclobutenyl Derivatives and RAFT Polymerization

    Get PDF
    A series of cyclobutene-based macromonomers derived from monomethyl ether poly(ethylene oxide) (PEO), poly(ethyl acrylate) (PEA), poly(N-isopropylacrylamide) (PNIPAM), and PEO-b-PNIPAM were synthesized by “click” copper-catalyzed azide−alkyne cycloaddition (CuAAC) and reversible addition−fragmentation chain transfer (RAFT) polymerization. First, original di- and trifunctional cyclobutene precursors with azido, alkyne and/or chain transfer agent were successfully obtained and fully characterized. Azido- and alkyne-functionalized cyclobutenes were then conjugated with modified PEO bearing azido or alkyne groups, resulting in cyclobutene-based PEOs in quantitative conversions as ascertained by NMR spectroscopy and MALDI−TOF mass spectrometry. The new chain transfer agent-terminated cyclobutene was used to mediate the RAFT polymerization of ethyl acrylate and N-isopropylacrylamide. Well-defined polymers with controlled molecular weights (Mn = 3700−11 500 g·mol−1) and narrow molecular weight distributions (PDI = 1.06−1.14) were thus obtained that retain the cyclobutene functionality, demonstrating the orthogonality of the RAFT process toward the cyclobutenyl insaturation. Combination of CuACC and RAFT polymerization was used to afford PEO-b-PNIPAM block copolymer functionalized by a cyclobutene end-group

    One Dimensional Oxygen Ordering in YBa2Cu3O(7-delta)

    Full text link
    A model consisting of oxygen-occupied and -vacant chains is considered, with repulsive first and second nearest-neighbor interactions V1 and V2, respectively. The statistical mechanics and the diffraction spectrum of the model is solved exactly and analytically with the only assumption V1 >> V2. At temperatures T ~ V1 only a broad maximum at (1/2,0,0) is present, while for ABS(delta - 1/2) > 1/14 at low enough T, the peak splits into two. The simple expression for the diffraction intensity obtained for T << V1 represents in a more compact form previous results of Khachaturyan and Morris[1],extends them to all delta and T/V2 and leads to a good agreement with experiment. [1] A.G.Khachaturyan and J.W.Morris, Jr., Phys.Rev.Lett. 64,76(1990)Comment: 13 pages,Revtex,3 figures available upon request but can be plotted using simple analytical functions,CNEA-CAB 92/04

    Theory of temperature dependence of the Fermi surface-induced splitting of the alloy diffuse-scattering intensity peak

    Full text link
    The explanation is presented for the temperature dependence of the fourfold intensity peak splitting found recently in diffuse scattering from the disordered Cu3Au alloy. The wavevector and temperature dependence of the self-energy is identified as the origin of the observed behaviour. Two approaches for the calculation of the self-energy, the high-temperature expansion and the alpha-expansion, are proposed. Applied to the Cu3Au alloy, both methods predict the increase of the splitting with temperature, in agreement with the experimental results.Comment: 4 pages, 3 EPS figures, RevTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor

    Hot DAVs : a probable new class of pulsating white dwarf stars

    Get PDF
    We have discovered a pulsating DA white dwarf at the lower end of the temperature range 45 000–30 000 K where a few helium atmosphere white dwarfs are known. There are now three such pulsators known, suggesting that a new class of theoretically predicted pulsating white dwarf stars exists. We name them the hot DAV stars. From high-speed photometric observations with the ULTRACAM photometer on the 4.2-m William Herschel Telescope, we show that the hydrogen atmosphere white dwarf star WD1017−138 pulsates in at least one mode with a frequency of 1.62 mHz (a period of 624 s). The amplitude of that mode was near 1 mmag at a 10σ confidence level on one night of observation and an 8.4σ confidence level on a second night. The combined data have a confidence level of 11.8σ. This supports the two other detections of hot DAV stars previously reported. From three Very Large Telescope Ultraviolet and Visual Echelle Spectrograph spectra we confirm also that WD1017−138 is a hydrogen atmosphere white dwarf with no trace of helium or metals with Teff = 32 600 K, log g = 7.8 (cgs) and M = 0.55 M⊙. The existence of pulsations in these DA white dwarfs at the cool edge of the 45 000–30 000 K temperature range supports the thin hydrogen layer model for the deficit of helium atmosphere white dwarfs in this range. DA white dwarfs with thick hydrogen layers do not have the superadiabatic, chemically inhomogeneous (μ-gradient) zone that drives pulsation in this temperature range. The potential for higher amplitude hot DAV stars exists; their discovery would open the possibility of a direct test of the explanation for the deficit of helium atmosphere white dwarfs at these temperatures by asteroseismic probing of the atmospheric layers of the hot DAV stars. A search for pulsation in a further 22 candidates with ULTRACAM on the European Southern Observatory New Technology Telescope gave null results for pulsation at precisions in the range 0.5–3 mmag, suggesting that the pulsation amplitudes in such stars are relatively low, hence near the detection limit with the ground-based telescopes used in the surve

    Cyclobutenyl macromonomers: Synthetic strategies and ring-opening metathesis polymerization

    Get PDF
    AbstractIn contrast to their (oxa)norbornenyl counterparts, cyclobutenyl derivatives have remained relatively unexplored in ring-opening metathesis polymerization (ROMP), despite ROMP of cyclobutene derivatives yields unsaturated polymers based on a strictly 1,4-polybutadiene backbone that is not easily attainable by other routes. This article summarizes work done in our group in the field of cyclobutenyl-capped macromonomers that are convenient building blocks for the synthesis of graft (bottle-brush) copolymers by ROMP via the so-called macromonomer (or grafting-through) route. Synthetic strategies employing orthogonal chemistries such as reversible deactivation radical polymerization techniques (atom transfer radical polymerization – ATRP, and reversible addition-fragmentation chain transfert (RAFT) polymerization) and recent developments using copper-catalyzed azide–alkyne cycloaddition click chemistry are highlighted. Furthermore, ROMP of the so-obtained macromonomers, including preliminary novel results regarding ROMP of cyclobutenyl-capped macromonomers prepared through RAFT polymerization and click chemistry are reported and discussed

    A Quantitative Analysis of the Available Multicolor Photometry for Rapidly Pulsating Hot B Subdwarfs

    Get PDF
    We present a quantitative and homogeneous analysis of the broadband multicolor photometric data sets gathered so far on rapidly pulsating hot B subdwarf stars. This concerns seven distinct data sets related to six different stars. Our analysis is carried out within the theoretical framework developed by Randall et al., which includes full nonadiabatic effects. The goal of this analysis is partial mode identification, i.e., the determination of the degree index l of each of the observed pulsation modes. We assume possible values of l from 0 to 5 in our calculations. For each target star, we compute a specific model atmosphere and a specific pulsation model using estimates of the atmospheric parameters coming from time-averaged optical spectroscopy. For every assumed value of l, we use a formal chi-squared approach to model the observed amplitude-wavelength distribution of each mode, and we compute a quality-of-fit Q probability to quantify the derived fit and to discriminate objectively between the various solutions. We find that no completely convincing and unambiguous l identification is possible on the basis of the available data, although partial mode discrimination has been reached for 25 out of the 41 modes studied. A brief statistical study of these results suggests that a majority of the modes must have l values of 0, 1, and 2, but also that modes with l = 4 could very well be present while modes with l = 3 appear to be rarer. This is in line with recent results showing that l = 4 modes in rapidly pulsating B subdwarfs have a higher visibility in the optical domain than modes with l = 3. Although somewhat disappointing in terms of mode discrimination, our results still suggest that the full potential of multicolor photometry for l identification in pulsating subdwarfs is within reach.Comment: 59 pages, 18 figures, accepted for publication in the Astrophysical Journal Supplement Serie
    corecore