6,483 research outputs found
Towards an Empirical Determination of the ZZ Ceti Instability Strip
We present atmospheric parameters for a large sample of DA white dwarfs that
are known to be photometrically constant. For each star, we determine the
effective temperature and surface gravity by comparing high signal-to-noise
ratio optical spectra to the predictions of detailed model atmosphere
calculations. We also report the successful prediction and detection of
photometric variability in G232-38 based on similar Teff and log g
determinations. The atmospheric parameters derived for this sample of constant
stars as well as those for the known sample of bright ZZ Ceti stars (now
boosted to a total of 39) have been obtained in a highly homogeneous way. We
combine them to study the empirical red and blue edges as well as the purity of
the ZZ Ceti instability strip. We find that the red edge is rather well
constrained whereas there exists a rather large range of possibilities for the
slope of the blue edge. Furthermore, the ZZ Ceti instability strip that results
from our analysis contains no nonvariable white dwarfs. Our sample of constant
stars is part of a much broader spectroscopic survey of bright (V < 17) DA
white dwarfs, which we have recently undertaken. We also present here some
preliminary results of this survey. Finally, we revisit the analysis by Mukadam
et al. of the variable and nonvariable DA stars uncovered as part of the Sloan
Digital Sky Survey. Their erroneous conclusion of an instability strip
containing several nonvariable stars is traced back to the low signal-to-noise
ratio spectroscopic observations used in that survey.Comment: 43 pages, 2 tables, 14 figures, accepted for publication in the
Astrophysical Journa
Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology
We present some of the results of a survey aimed at exploring the
asteroseismological potential of the newly-discovered carbon-atmosphere white
dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere
white dwarfs may drive low-order gravity modes. We demonstrate that our
theoretical results are consistent with the recent exciting discovery of
luminosity variations in SDSS J1426+5752 and some null results obtained by a
team of scientists at McDonald Observatory. We also present follow-up
photometric observations carried out by ourselves at the Mount Bigelow 1.6-m
telescope using the new Mont4K camera. The results of follow-up spectroscopic
observations at the MMT are also briefly reported, including the surprising
discovery that SDSS J1426+5752 is not only a pulsating star but that it is also
a magnetic white dwarf with a surface field near 1.2 MG. The discovery of
-mode pulsations in SDSS J1426+5752 is quite significant in itself as it
opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ
Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
In operando XAS investigation of reduction and oxidation processes in cobalt and iron mixed spinels during the chemical loop reforming of ethanol
FeCo2O4 and CoFe2O4 nanoparticles have been studied as oxygen carriers for the Chemical Loop Reforming (CLR) of ethanol. By using in operando X-ray absorption spectroscopy we have followed in real time the chemical and structural changes that take place on the materials as a function of temperature and reactive atmosphere (i.e. ethanol/water streams). During the first step of CLR for both oxides the most active chemical species are the cations in the tetrahedral sites, irrespective of their chemical nature. Quite rapidly the spinel structure is transformed into a mix of wustite-type oxide and metal alloys, but the formation of a metal phase is easier in the case of cobalt, while iron shows a marked preference to form wustite type oxide. Despite the good reducibility of FeCo2O4 imparted by the high amount of cobalt, its performance in the production of hydrogen is quite poor due to an inefficient oxidation by water steam, which is able to oxidize only the outer shell of the nanoparticles. In contrast, CoFe2O4 due to the residual presence of a reducible wustite phase shows a higher hydrogen yield. Moreover, by combining the structural information provided by X-ray absorption spectroscopy with the analysis of the byproducts of ethanol decomposition we could infer that FeCo2O4 is more selective than CoFe2O4 for the selective dehydrogenation of ethanol to acetaldehyde because of the higher amount of Fe(III) ions in tetrahedral sites
On The Evolution of Magnetic White Dwarfs
We present the first radiation magnetohydrodynamics simulations of the
atmosphere of white dwarf stars. We demonstrate that convective energy transfer
is seriously impeded by magnetic fields when the plasma-beta parameter, the
thermal to magnetic pressure ratio, becomes smaller than unity. The critical
field strength that inhibits convection in the photosphere of white dwarfs is
in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG
field strengths observed in magnetic white dwarfs, implying that these objects
have radiative atmospheres. We have then employed evolutionary models to study
the cooling process of high-field magnetic white dwarfs, where convection is
entirely suppressed during the full evolution (B > 10 MG). We find that the
inhibition of convection has no effect on cooling rates until the effective
temperature (Teff) reaches a value of around 5500 K. In this regime, the
standard convective sequences start to deviate from the ones without convection
owing to the convective coupling between the outer layers and the degenerate
reservoir of thermal energy. Since no magnetic white dwarfs are currently known
at the low temperatures where this coupling significantly changes the
evolution, effects of magnetism on cooling rates are not expected to be
observed. This result contrasts with a recent suggestion that magnetic white
dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic
degenerates.Comment: 11 pages, 12 figures, accepted for publication in the Astrophysical
Journa
The Nature of the Driving Mechanism in the Pulsating Hybrid PG 1159 Star Abell 43
We extend our previous pulsational stability analyses of PG 1159 stars by
modeling the hybrid PG 1159 type star Abell 43. We show that the standard
kappa-mechanism due to the ionization of C and O in the envelope of this H-rich
PG 1159 star is perfectly able to drive g-mode pulsations. Thus, contrary to a
recent suggestion, there is no need to invoke any new or exotic mechanism to
explain the pulsational instabilities observed in this particular star. Our
expected instability band for l = 1 modes extends in period from ~ 2604 s to ~
5529 s, which is consistent with the available photometric observations of
Abell 43. We also suggest that efforts to detect luminosity variations in its
sibling NGC 7094 be pursued.Comment: 3 pages, 1 figure, Accepted for publication in A&
- …