9 research outputs found

    A voxel-wise assessment of growth differences in infants developing autism spectrum disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area

    Predicting the Location of Glioma Recurrence After a Resection Surgery

    Get PDF
    International audienceWe propose a method for estimating the location of glioma recurrence after surgical resection. This method consists of a pipeline including the registration of images at different time points, the estimation of the tumor infiltration map, and the prediction of tumor regrowth using a reaction-diffusion model. A data set acquired on a patient with a low-grade glioma and post surgery MRIs is considered to evaluate the accuracy of the estimated recurrence locations found using our method. We observed good agreement in tumor volume prediction and qualitative matching in regrowth locations. Therefore, the proposed method seems adequate for modeling low-grade glioma recurrence. This tool could help clinicians anticipate tumor regrowth and better characterize the radiologically non-visible infiltrative extent of the tumor. Such information could pave the way for model-based personalization of treatment planning in a near future

    Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy

    Get PDF
    Objective: Previous research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific tothe amygdala,andwhether it is specifictoASD(or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown. Methods: Longitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans). Results: Infants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months theASDgroup had significantly larger amygdala volume (Cohen's d50.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24monthswhenthe infantswere diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d52.12), compared with all other groups, which was significantly associated with greater repetitive behaviors. Conclusions: This is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis

    Network connectivity determines cortical thinning in early Parkinson's disease progression.

    Get PDF
    Here we test the hypothesis that the neurodegenerative process in Parkinson's disease (PD) moves stereotypically along neural networks, possibly reflecting the spread of toxic alpha-synuclein molecules. PD patients (n = 105) and matched controls (n = 57) underwent T1-MRI at entry and 1 year later as part of the Parkinson's Progression Markers Initiative. Over this period, PD patients demonstrate significantly greater cortical thinning than controls in parts of the left occipital and bilateral frontal lobes and right somatomotor-sensory cortex. Cortical thinning is correlated to connectivity (measured functionally or structurally) to a "disease reservoir" evaluated by MRI at baseline. The atrophy pattern in the ventral frontal lobes resembles one described in certain cases of Alzheimer's disease. Our findings suggest that disease propagation to the cortex in PD follows neuronal connectivity and that disease spread to the cortex may herald the onset of cognitive impairment

    Framework for integrated MRI average of the spinal cord white and gray matter: The MNI–Poly–AMU template

    No full text
    International audienceThe field of spinal cord MRI is lacking a common template, as existing for the brain, which would allow extraction of multi-parametric data (diffusion-weighted, magnetization transfer, etc.) without user bias, thereby facilitating group analysis and multi-center studies. This paper describes a framework to produce an unbiased average anatomical template of the human spinal cord. The template was created by co-registering T2-weighted images (N = 16 healthy volunteers) using a series of pre-processing steps followed by non-linear registration. A white and gray matter probabilistic template was then merged to the average anatomical template, yielding the MNI-Poly-AMU template, which currently covers vertebral levels C1 to T6. New subjects can be registered to the template using a dedicated image processing pipeline. Validation was conducted on 16 additional subjects by comparing an automatic template-based segmentation and manual segmentation, yielding a median Dice coefficient of 0.89. The registration pipeline is rapid (~15 min), automatic after one C2/C3 landmark manual identification, and robust, thereby reducing subjective variability and bias associated with manual segmentation. The template can notably be used for measurements of spinal cord cross-sectional area, voxel-based morphometry, identification of anatomical features (e.g., vertebral levels, white and gray matter location) and unbiased extraction of multi-parametric data

    Developmental trajectories of neuroanatomical alterations associated with the 16p11.2 Copy Number Variations.

    No full text
    Most of human genome is present in two copies (maternal and paternal). However, segments of the genome can be deleted or duplicated, and many of these genomic variations (known as Copy Number Variants) are associated with psychiatric disorders. 16p11.2 copy number variants (breakpoint 4-5) confer high risk for neurodevelopmental disorders and are associated with structural brain alterations of large effect-size. Methods used in previous studies were unable to investigate the onset of these alterations and whether they evolve with age. In this study, we aim at characterizing age-related effects of 16p11.2 copy number variants by analyzing a group with a broad age range including younger individuals. A large normative developmental dataset was used to accurately adjust for effects of age. We normalized volumes of segmented brain regions as well as volumes of each voxel defined by tensor-based morphometry. Results show that the total intracranial volumes, the global gray and white matter volumes are respectively higher and lower in deletion and duplication carriers compared to control subjects at 4.5 years of age. These differences remain stable through childhood, adolescence and adulthood until 23 years of age (range: 0.5 to 1.0 Z-score). Voxel-based results are consistent with previous findings in 16p11.2 copy number variant carriers, including increased volume in the calcarine cortex and insula in deletions, compared to controls, with an inverse effect in duplication carriers (1.0 Z-score). All large effect-size voxel-based differences are present at 4.5 years and seem to remain stable until the age of 23. Our results highlight the stability of a neuroimaging endophenotype over 2 decades during which neurodevelopmental symptoms evolve at a rapid pace
    corecore