449 research outputs found
Mathematical models for vulnerable plaques
A plaque is an accumulation and swelling in the artery walls and typically consists of cells, cell debris, lipids, calcium deposits and fibrous connective tissue. A person is likely to have many plaques inside his/her body even if they are healthy. However plaques may become "vulnerable", "high-risk" or "thrombosis-prone" if the person engages in a high-fat diet and does not exercise regularly.
In this study group, we proposed two mathematical models to describe plaque growth and rupture.
The first model is a mechanical one that approximately treats the plaque as an inflating elastic balloon. In this model, the pressure inside the core increases and then decreases suggesting that plaque stabilization and prevention of rupture is possible.
The second model is a biochemical one that focuses on the role of MMPs in degrading the fibrous plaque cap. The cap stress, MMP concentration, plaque volume and cap thickness are coupled together in a system of phenomenological equations. The equations always predict an eventual rupture since the volume, stresses and MMP concentrations generally grow without bound. The main weakness of the model is that many of the important parameters that control the behavior of the plaque are unknown.
The two simple models suggested by this group could serve as a springboard for more realistic theoretical studies. But most importantly, we hope they will motivate more experimental work to quantify some of the important mechanical and biochemical properties of vulnerable plaques
A desktop extreme ultraviolet microscope based on a compact laser-plasma light source
A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25–75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed
Anisotropic diffusion in continuum relaxation of stepped crystal surfaces
We study the continuum limit in 2+1 dimensions of nanoscale anisotropic
diffusion processes on crystal surfaces relaxing to become flat below
roughening. Our main result is a continuum law for the surface flux in terms of
a new continuum-scale tensor mobility. The starting point is the Burton,
Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps
whose motion drives surface evolution. Our derivation is based on the
separation of local space variables into fast and slow. The model includes: (i)
anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps;
(ii) diffusion of atoms along step edges; and (iii) attachment-detachment of
atoms at step edges. We derive a parabolic fourth-order, fully nonlinear
partial differential equation (PDE) for the continuum surface height profile.
An ingredient of this PDE is the surface mobility for the adatom flux, which is
a nontrivial extension of the tensor mobility for isotropic terrace diffusion
derived previously by Margetis and Kohn. Approximate, separable solutions of
the PDE are discussed.Comment: 14 pages, 1 figur
Continued convection and the initial recovery of Dst
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94856/1/grl16086.pd
Corrections to Einstein's relation for Brownian motion in a tilted periodic potential
In this paper we revisit the problem of Brownian motion in a tilted periodic
potential. We use homogenization theory to derive general formulas for the
effective velocity and the effective diffusion tensor that are valid for
arbitrary tilts. Furthermore, we obtain power series expansions for the
velocity and the diffusion coefficient as functions of the external forcing.
Thus, we provide systematic corrections to Einstein's formula and to linear
response theory. Our theoretical results are supported by extensive numerical
simulations. For our numerical experiments we use a novel spectral numerical
method that leads to a very efficient and accurate calculation of the effective
velocity and the effective diffusion tensor.Comment: 29 pages, 7 figures, submitted to the Journal of Statistical Physic
Recommended from our members
Inventory of Boreal Fire Emissions for North America in 2004: The Importance of Peat Burning and Pyro-Convective Injection
The summer of 2004 was one of the largest fire seasons on record for Alaska and western Canada. We construct a daily bottom-up fire emission inventory for that season, including consideration of peat burning and high-altitude (buoyant) injection, and evaluate it in a global chemical transport model (the GEOS-Chem CTM) simulation of CO through comparison with MOPITT satellite and ICARTT aircraft observations. The inventory is constructed by combining daily area burned reports and MODIS fire hot spots with estimates of fuel consumption and emission factors based on ecosystem type. We estimate the contribution from peat burning using drainage and peat distribution maps for Alaska and Canada; 17% of the reported 5.1 × 106 ha burned were located in peatlands in 2004. Our total estimate of North American fire emissions during the summer of 2004 is 30 Tg CO, including 11 Tg from peat. Including peat burning in the GEOS-Chem simulation improves agreement with MOPITT observations. The long-range transport of fire plumes observed by MOPITT suggests that the largest fires injected a significant fraction of their emissions in the upper troposphere.Earth and Planetary SciencesEngineering and Applied Science
Computation tools for the combat of cardiovascular heart disease
The paper discusses two potential applications of computational technologies to combat cardiovascular heart disease in Singapore. The first application involves the exploitation of neural networks for the risk prediction of coronary heart disease. The second application involves the potential integration of artificial intelligence and high performance modelling with clinical biology for the analysis and visualisation of atherosclerosis related structure. The implementation of these computation tools in phases constitutes initial efforts in the development of a digital clinical atherosclerosis laboratory to assist in the prevention and treatment of cardiovascular heart disease
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
- …