78 research outputs found

    Growth media effects on shoot physiology, nodule numbers and symbiotic nitrogen fixation in soybean

    Get PDF
    AbstractSeveral research groups (both in South Africa and other countries) are currently involved in research aimed at improving symbiotic nitrogen fixation (SNF) and root nodule sustainability in soybean [Glycine max (L.) Merr.]. In many of these experiments potted plants are used, and in this paper the importance of careful selection of growth media is demonstrated. Bradyrhizobium japonicum-inoculated soybean seedlings were cultivated in pots containing N-free growth media (sand, fine vermiculite or coarse vermiculite) or a growth medium containing low concentrations of water-soluble nitrogen predominantly in the form of ammonium (mixture of potting soil, sand and vermiculite). The effects of growth media on shoot physiology were assessed by measurement of plastochron index, chlorophyll content and CO2 assimilation rates. Nodule numbers, nitrogenase activity and nodule ureide content were also determined. Although similar source–sink relationships were maintained in plants cultured in the various growth media, large effects on nodule numbers and SNF were observed. Shoot phenotype and physiology did not provide any insight into these belowground effects. The presence of mineral N, or sand as culture medium, led to the formation of more abundant nodules but with low SNF activity. Vermiculite, irrespective of particle size, resulted in plants with root systems housing nodules with high SNF activity. It is concluded that choice of growth media for cultivating soybean plants under controlled growth conditions is an important consideration, especially in multi-institution collaborations where comparability between experiments is a pre-requisite

    Susceptibility of cat fleas (siphonaptera: Puclicidae) to fipronil and imidacloprid using adult and larval bioassays

    Get PDF
    © 2014 Entomological Society of America This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] monitoring of the susceptibility offleas to insecticides has typically been conducted by exposing adults on treated surfaces. Other methods such as topical applications of insecticides to adults and larval bioassays on treated rearing media have been developed. Unfortunately, baseline responses of susceptible strains of cat flea, Ctenocephalides felis (Bouchè), except for imidacloprid, have not been determined for all on-animal therapies and new classes of chemistry now being used. However, the relationship between adult and larval bioassays of fleas has not been previously investigated. The adult and larval bioassays of fipronil and imidacloprid were compared for both field-collected isolates and laboratory strains. Adult topical bioassays of fipronil and imidacloprid to laboratory strains and field-collected isolates demonstrated that LD50s of fipronil and imidacloprid ranged from 0.11 to 0.40 nanograms per flea and 0.02 to 0.18 nanograms per flea, respectively. Resistance ratios for fipronil and imidacloprid ranged from 0.11 to 2.21. Based on the larval bioassay published for imidacloprid, a larval bioassay was established for fipronil and reported in this article. The ranges of the LC50s of fipronil and imidacloprid in the larval rearing media were 0.07-0.16 and 0.11-0.21 ppm, respectively. Resistance ratios for adult and larval bioassays ranged from 0.11 to 2.2 and 0.58 to 1.75, respectively. Both adult and larval bioassays provided similar patterns for fipronil and imidacloprid. Although the adult bioassays permitted a more precise dosage applied, the larval bioassays allowed for testing isolates without the need to maintain on synthetic or natural hosts.Peer reviewedFinal Published versio

    Identification and genetic diversity of two invasive Pissodes spp. Germar (Coleoptera : Curculionidae) in their introduced range in the southern hemisphere

    Get PDF
    During the first half of the twentieth century, two accidental cases of introduction of Pissodes weevils were recorded from the southern hemisphere. The weevils in South Africa were identified as the deodar weevil (Pissodes nemorensis) and those in South America as the small banded pine weevil (Pissodes castaneus). Wide distribution of the two species in their invasive range, general difficulty in identifying some Pissodes spp., and the varying feeding and breeding behaviours of the species in South Africa has necessitated better evidence of species identity and genetic diversity of both species and population structure of the species in South Africa. Barcoding and the Jerry-to-Pat region of the COI gene were investigated. Morphometric data of the South African species was analysed. Our results confirmed the introduction of only one Pissodes species of North American origin to South Africa. However, this species is not P. nemorensis, but an unrecognized species of the P. strobi complex or a hybrid between P. strobi and P. nemorensis. Only P. castaneus, of European origin, was identified from South America. We identified ten mitochondrial DNA haplotypes from South Africa with evidence of moderate genetic structure among geographic populations. Terminal leader and bole-feeding weevils did not differ at the COI locus. A single haplotype was identified from populations of P. castaneus in South America. Results of the present study will have implications on quarantine, research and management of these insect species.Tree Protection Co-operative Program (TPCP), DST-National Research Foundation (NRF) and the University of Pretoria, South Africa.http://link.springer.com/journal/105302017-08-31hb2017Forestry and Agricultural Biotechnology Institute (FABI)GeneticsZoology and Entomolog

    Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    Get PDF
    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front
    • …
    corecore