137 research outputs found

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene

    Full text link
    The remarkable electronic properties of graphene have fueled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor its electronic properties and to control its charge carriers. Here we show that a single atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunneling microscope (STM). The response of the conduction electrons in graphene to the local charge is monitored with scanning tunneling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime 6-11 where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states (DOS) within a disc centered on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary information. Nature Physics advance online publication, Feb 22 (2016

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≥2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.

    Get PDF
    Author's accepted versionFinal version available from ACS via the DOI in this recordAs a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.FJGA and PA-G acknowledge support from the Spanish Ministry of Economy and Competitiveness through the national programs MAT2014-59096-P and FIS2014-60195-JIN, respectively. MFC and SR acknowledge support from EPSRC (Grant no. EP/J000396/1, 281 EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM- 002438/1), from Royal Society International Exchanges Scheme 2012/R3 and 2013/R2 and from European Commission (FP7-ICT-2013-613024-GRASP). SD, DNB and MF acknowledge support of ONR N00014-15-1-2671. DNB is the Moore Investigator in Quantum Materials funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4533

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure

    Tuning a Circular p-n Junction in Graphene from Quantum Confinement to Optical Guiding

    Full text link
    The motion of massless Dirac-electrons in graphene mimics the propagation of photons. This makes it possible to control the charge-carriers with components based on geometrical-optics and has led to proposals for an all-graphene electron-optics platform. An open question arising from the possibility of reducing the component-size to the nanometer-scale is how to access and understand the transition from optical-transport to quantum-confinement. Here we report on the realization of a circular p-n junction that can be continuously tuned from the nanometer-scale, where quantum effects are dominant, to the micrometer scale where optical-guiding takes over. We find that in the nanometer-scale junction electrons are trapped in states that resemble atomic-collapse at a supercritical charge. As the junction-size increases, the transition to optical-guiding is signaled by the emergence of whispering-gallery modes and Fabry-Perot interference. The creation of tunable junctions that straddle the crossover between quantum-confinement and optical-guiding, paves the way to novel design-architectures for controlling electronic transport.Comment: 16 pages, 4 figure

    Melting of a 2D Quantum Electron Solid in High Magnetic Field

    Full text link
    The melting temperature (TmT_m) of a solid is generally determined by the pressure applied to it, or indirectly by its density (nn) through the equation of state. This remains true even for helium solids\cite{wilk:67}, where quantum effects often lead to unusual properties\cite{ekim:04}. In this letter we present experimental evidence to show that for a two dimensional (2D) solid formed by electrons in a semiconductor sample under a strong perpendicular magnetic field\cite{shay:97} (BB), the TmT_m is not controlled by nn, but effectively by the \textit{quantum correlation} between the electrons through the Landau level filling factor ν\nu=nh/eBnh/eB. Such melting behavior, different from that of all other known solids (including a classical 2D electron solid at zero magnetic field\cite{grim:79}), attests to the quantum nature of the magnetic field induced electron solid. Moreover, we found the TmT_m to increase with the strength of the sample-dependent disorder that pins the electron solid.Comment: Some typos corrected and 2 references added. Final version with minor editoriol revisions published in Nature Physic

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Mifamurtide for the treatment of nonmetastatic osteosarcoma

    Get PDF
    International audienceINTRODUCTION: The standard treatment for osteosarcoma requires both macroscopic surgical wide resection and postoperative multi-drug chemotherapy in neoadjuvant and adjuvant settings. However, the 5-year event-free survival has remained at a plateau of 60-70% of patients with nonmetastatic osteosarcoma for more than 30 years. AREAS COVERED: Mifamurtide (liposomal muramyl tripeptide phosphatidylethanolamine; L-MTP-PE) is a new agent. L-MTP-PE is a nonspecific immunomodulator, which is a synthetic analog of a component of bacterial cell walls. L-MTP-PE activates macrophages and monocytes as a potent activator of immune response in addition to standard chemotherapy. It also improves the overall survival from 70 to 78% and results in a one-third reduction in the risk of death from osteosarcoma. This review summarizes the most recent findings about L-MTP-PE and its therapeutic application for nonmetastatic osteosarcoma. EXPERT OPINION: Recently, L-MTP-PE has been approved in Europe for the treatment of nonmetastatic osteosarcoma with chemotherapy. L-MTP-PE in combination with traditional treatment is expected to go mainstream and to be beneficial for patients with osteosarcoma. Information about potential benefit regarding mifamurtide use in the neoadjuvant setting (i.e., before surgery) and/or usefulness of L-MTP-PE in metastatic in relapsed and metastatic osteosarcoma requires analysis of expanded access and/or future clinical trials of L-MTP-PE in high-burden and low-burden situations
    • …
    corecore