86 research outputs found
Hawaii Space Grant Consortium
The Hawai'i Space Grant Consortium is composed of ten institutions of higher learning including the University of Hawai'i at Manoa, the University of Hawai'i at Hilo, the University of Guam, and seven Community Colleges spread over the 4 main Hawaiian islands. Geographic separation is not the only obstacle that we face as a Consortium. Hawai'i has been mired in an economic downturn due to a lack of tourism for almost all of the period (2001 - 2004) covered by this report, although hotel occupancy rates and real estate sales have sky-rocketed in the last year. Our challenges have been many including providing quality educational opportunities in the face of shrinking State and Federal budgets, encouraging science and technology course instruction at the K-12 level in a public school system that is becoming less focused on high technology and more focused on developing basic reading and math skills, and assembling community college programs with instructors who are expected to teach more classes for the same salary. Motivated people can overcome these problems. Fortunately, the Hawai'i Space Grant Consortium (HSGC) consists of a group of highly motivated and talented individuals who have not only overcome these obstacles, but have excelled with the Program. We fill a critical need within the State of Hawai'i to provide our children with opportunities to pursue their dreams of becoming the next generation of NASA astronauts, engineers, and explorers. Our strength lies not only in our diligent and creative HSGC advisory board, but also with Hawai'i's teachers, students, parents, and industry executives who are willing to invest their time, effort, and resources into Hawai'i's future. Our operational philosophy is to FACE the Future, meaning that we will facilitate, administer, catalyze, and educate in order to achieve our objective of creating a highly technically capable workforce both here in Hawai'i and for NASA. In addition to administering to programs and educating the public in the traditional sense, we also work to facilitate partnerships between other departments (geology & geophysics, engineering, geography, astronomy), state and federal government agencies in Hawai'i, and private industry. In some cases, we are the catalyst for new partnerships between private agency sponsors and education projects or for new joint research and education projects between industry and the University faculty
Surface temperature and spectral measurements at Santiaguito lava dome, Guatemala
An infrared thermometer, spectroradiometer and digital video camera were used to observe and document short-term evolution of surface brightness temperature and morphology at Santiaguito lava dome, Guatemala. The thermometer dataset shows 40–70 minute-long cooling cycles, each defined by a cooling curve that is both initiated and terminated by rapid increases in temperature due to regular ash venting. The average cooling rate calculated for each cycle range from 0.9 to 1.6°C/min. We applied a two-component thermal mixture model to the spectroradiometer (0.4–2.5 μm) dataset. The results suggest that the observed surface morphology changed from a cool (120–250°C) crust-dominated surface with high temperature fractures (\u3e900°C) in the first segment of the measurement period to an isothermal surface at moderately high temperature (350–500°C) during the second segment. We attribute the change in the thermal state of the surface to the physical rearrangement of the dome\u27s surface during the most energetic of the ash eruptions
Implications of the Top Quark Mass Measurement for the CKM Parameters, and CP Asymmetries
Motivated by the recent determination of the top quark mass by the CDF
collaboration, \mt =174 \pm 10 ^{+13}_{-12} GeV, we review and update the
constraints on the parameters of the quark flavour mixing matrix in
the standard model. In performing our fits, we use inputs from the measurements
of the following quantities: (i) \abseps, the CP-violating parameter in
decays, (ii) \delmd, the mass difference due to the \bdbdbar\ mixing, (iii)
the matrix elements \absvcb and \absvub, and (iv) -hadron lifetimes. We
find that the allowed region of the unitarity triangle is very large, mostly
due to theoretical uncertainties. (This emphasizes the importance of
measurements of CP-violating rate asymmetries in the system.) Nevertheless,
the present data do somewhat restrict the allowed values of the coupling
constant product and the renormalization-scale
invariant bag constant . With the updated CKM matrix we present the
currently-allowed range of the ratio , as well as
the standard model predictions for the \bsbsbar\ mixing parameter \xs and the
quantities , and , which characterize
the CP-asymmetries in -decays. The ALEPH collaboration has recently reported
a significant improvement on the lower limit on the \bs-\bsb mass
difference, (95\% C.L.). This has interesting
consequences for the CKM parameters which are also worked out.
NOTE: this is a revised and updated version of our previous paper.Comment: LaTeX, 27 pages, 16 uuencoded figures (enclosed), CERN-TH.7398/94,
UdeM-GPP-TH-94-0
Charm and Bottom Semileptonic Decays
We review the present status of theoretical attempts to calculate the
semileptonic charm and bottom decays and then present a calculation of these
decays in the light--front frame at the kinematic point . This allows us
to evaluate the form factors at the same value of , even though the
allowed kinematic ranges for charm and bottom decays are very different. Also,
at this kinematic point the decay is given in terms of only one form factor
. For the ratio of the decay rates given by the E653 collaboration we
show that the determination of the ratio of the Cabibbo--Kobayashi--Maskawa
(CKM) matrix elements is consistent with that obtained from the unitarity
constraint. At present, though, the unitarity method still has greater
accuracy. Since comparisons of the semileptonic decays into and either
electrons or muons will be available soon from the E791 Fermilab experiment, we
also look at the massive muon case. We show that for a range of the
symmetry breaking is small even though the contributions of the
various helicity amplitudes becomes more complicated. For decays, the decay
at involves an extra form factor
coming from the photon contribution and so is not amenable to the same kind of
analysis, leaving only the decay as a
possibility. As the mass of the decaying particle increases we note that the
symmetry becomes badly broken at .Comment: Latex, 19 pages, two figures are attached, a minor change in the
manuscript related to thi
Rare exclusive semileptonic b -> s transitions in the Standard Model
We study long-distance effects in rare exclusive semileptonic decays B -> (K,
K*) (l+ l-, nu bar{nu}) and analyze dilepton spectra and asymmetries within the
framework of the Standard Model. The form factors, describing the meson
transition amplitudes of the effective Hamiltonian are calculated within the
lattice-constrained dispersion quark model: the form factors are given by
dispersion representations through the wave functions of the initial and final
mesons, and these wave functions are chosen such that the B -> K* transition
form factors agree with the lattice results at large q**2. We calculate
branching ratios of semileptonic B -> K, K* transition modes and study the
sensitivity of observables to the long-distance contributions. The shape of the
forward-backward asymmetry and the longitudinal lepton polarization asymmetry
are found to be independent of the long-distance effects and mainly determined
by the values of the Wilson coefficients in the Standard Model.Comment: revtex, 17 pp., 5 figures with epsfig.st
Recommended from our members
Measurement Report: Long-Range Transport Patterns into the Tropical Northwest Pacific during the CAMP2Ex Aircraft Campaign: Chemical Composition, Size Distributions, and the Impact of Convection
The tropical Northwest Pacific (TNWP) is a receptor for pollution sources throughout Asia and is highly susceptible to climate change, making it imperative to understand long-range transport in this complex aerosol-meteorological environment. Measurements from the NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex; 24 August to 5 October 2019) and back trajectories from the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) were used to examine transport into the TNWP from the Maritime Continent (MC), peninsular Southeast Asia (PSEA), East Asia (EA), and the West Pacific (WP). A mid-campaign monsoon shift on 20 September 2019 led to distinct transport patterns between the southwest monsoon (SWM; before 20 September) and monsoon transition (MT; after 20 September). During the SWM, long-range transport was a function of southwesterly winds and cyclones over the South China Sea. Low- (high-) altitude air generally came from MC (PSEA), implying distinct aerosol processing related to convection and perhaps wind shear. The MT saw transport from EA and WP, driven by Pacific northeasterly winds, continental anticyclones, and cyclones over the East China Sea. Composition of transported air differed by emission source and accumulated precipitation along trajectories (APT). MC air was characterized by biomass burning tracers while major components of EA air pointed to Asian outflow and secondary formation. Convective scavenging of PSEA air was evidenced by considerable vertical differences between aerosol species but not trace gases, as well as notably higher APT and smaller particles than other regions. Finally, we observed a possible wet scavenging mechanism acting on MC air aloft that was not strictly linked to precipitation. These results are important for understanding the transport and processing of air masses with further implications for modeling aerosol lifecycles and guiding international policymaking to public health and climate, particularly during the SWM and MT
Weak Decays Beyond Leading Logarithms
We review the present status of QCD corrections to weak decays beyond the
leading logarithmic approximation including particle-antiparticle mixing and
rare and CP violating decays. After presenting the basic formalism for these
calculations we discuss in detail the effective hamiltonians for all decays for
which the next-to-leading corrections are known. Subsequently, we present the
phenomenological implications of these calculations. In particular we update
the values of various parameters and we incorporate new information on m_t in
view of the recent top quark discovery. One of the central issues in our review
are the theoretical uncertainties related to renormalization scale ambiguities
which are substantially reduced by including next-to-leading order corrections.
The impact of this theoretical improvement on the determination of the
Cabibbo-Kobayashi-Maskawa matrix is then illustrated in various cases.Comment: 229 pages, 32 PostScript figures (included); uses RevTeX, epsf.sty,
rotate.sty, rmpbib.sty (included), times.sty (included; requires LaTeX 2e);
complete PostScript version available at
ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps.gz or
ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps2.gz
(scaled down and rotated version to print two pages on one sheet of paper
Multi-campaign Ship and Aircraft Observations of Marine Cloud Condensation Nuclei and Droplet Concentrations
In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates
Multi-campaign ship and aircraft observations of marine cloud condensation nuclei and droplet concentrations
In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates
Paramedic Acute Stroke Treatment Assessment (PASTA): study protocol for a randomised controlled trial
BACKGROUND: Despite evidence from clinical trials that intravenous (IV) thrombolysis is a cost-effective treatment for selected acute ischaemic stroke patients, there remain large variations in the rate of IV thrombolysis delivery between stroke services. This study is evaluating whether an enhanced care pathway delivered by paramedics (the Paramedic Acute Stroke Treatment Assessment (PASTA)) could increase the number of patients who receive IV thrombolysis treatment. METHODS: Study design: Cluster randomised trial with economic analysis and parallel process evaluation. SETTING: National Health Service ambulance services, emergency departments and hyper-acute stroke units within three geographical regions of England and Wales. Randomisation: Ambulance stations within each region are the units of randomisation. According to station allocation, paramedics based at a station deliver the PASTA pathway (intervention) or continue with standard stroke care (control). Study intervention: The PASTA pathway includes structured pre-hospital information collection, prompted pre-notification, structured handover of information in hospital and assistance with simple tasks during the initial hospital assessment. Study-trained intervention group paramedics deliver this pathway to adults within 4 h of suspected stroke onset. Study control: Standard stroke care according to national and local guidelines for the pre-hospital and hospital assessment of suspected stroke. PARTICIPANTS: Participants enrolled in the study are adults with confirmed stroke who were assessed by a study paramedic within 4 h of symptom onset. PRIMARY OUTCOME: Proportion of participants receiving IV thrombolysis. SAMPLE SIZE: 1297 participants provide 90% power to detect a 10% difference in the proportion of patients receiving IV thrombolysis. DISCUSSION: The results from this trial will determine whether an enhanced care pathway delivered by paramedics can increase thrombolysis delivery rates. TRIAL REGISTRATION: ISRCTN registry, ISRCTN12418919 . Registered on 5 November 2015
- …