1,068 research outputs found
SWKB Quantization Rules for Bound States in Quantum Wells
In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix
formulation of the Bohr-Sommerfield quantization rule has been applied to the
study of bound states in one dimension quantum wells. Here we study these
potentials in the frame work of supersymmetric WKB (SWKB) quantization
approximation and find that SWKB quantization rule is superior to the modified
Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page
Renormalization in Quantum Mechanics
We implement the concept of Wilson renormalization in the context of simple
quantum mechanical systems. The attractive inverse square potential leads to a
\b function with a nontrivial ultraviolet stable fixed point and the Hulthen
potential exhibits the crossover phenomenon. We also discuss the implementation
of the Wilson scheme in the broader context of one dimensional potential
problems. The possibility of an analogue of Zamolodchikov's function in
these systems is also discussed.Comment: 16 pages, UR-1310, ER-40685-760. (Additional references included.
Do attractive bosons condense?
Motivated by experiments on bose atoms in traps which have attractive
interactions (e.g. ^7Li), we consider two models which may be solved exactly.
We construct the ground states subject to the constraint that the system is
rotating with angular momentum proportional to the number of atoms. In a
conventional system this would lead to quantised vortices; here, for attractive
interactions, we find that the angular momentum is absorbed by the centre of
mass motion. Moreover, the state is uncondensed and is an example of a
`fragmented' condensate discussed by Nozi\`eres and Saint James. The same
models with repulsive interactions are fully condensed in the thermodynamic
limit.Comment: 4 pages, Latex, RevTe
A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol
1. Introduction pg. 1
2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9
3. Current GHG Emission Values for Each Emissions Source Category pg. 88
4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15
A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol
1. Introduction pg. 1
2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9
3. Current GHG Emission Values for Each Emissions Source Category pg. 88
4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts
The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [γ-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [γ-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110000 × g centrifugation
Euler buckling in red blood cells: An optically driven biological micromotor
We investigate the physics of an optically-driven micromotor of biological
origin. A single, live red blood cell, when placed in an optical trap folds
into a rod-like shape. If the trapping laser beam is circularly polarized, the
folded RBC rotates. A model based on the concept of buckling instabilities
captures the folding phenomenon; the rotation of the cell is simply understood
using the Poincar\`e sphere. Our model predicts that (i) at a critical
intensity of the trapping beam the RBC shape undergoes large fluctuations and
(ii) the torque is proportional to the intensity of the laser beam. These
predictions have been tested experimentally. We suggest a possible mechanism
for emergence of birefringent properties in the RBC in the folded state
- …