830 research outputs found

    Effetto dell’etanolo sullo stato di metilazione del gene che codifica per la neurotrofina “Brain-Derived Neurotrophic Factor”

    Get PDF
    Alcohol addiction is thought to depend on molecular and cellular adaptations in the brain that result from chronic drug exposure (Fitzgerald and Nestler, 1995 ). This suggests that chronic alcohol abuse involves stable changes in the brain at the molecular and cellular levels responsible for long-lasting alterations in behavior. One of the candidate molecules involved in such mechanisms is brain-derived neurotrophic factor (BDNF). Aberrant regulation of BDNF has been implicated in the development of psychiatric disorders, including schizophrenia, depression, anxiety and alcohol addiction (Moonat et al., 2010). Multiple actions of ethanol on BDNF gene expression and signalling have been described. Nevertheless the considerable complexity within the BDNF gene itself and the multiple mRNAs encoded by up to 9 potential exons is further complicated because of its epigenetic regulation by methylation of BDNF promoters. The knowledge of the promoter that may be differentially regulated during various states of ethanol exposure and a detailed analysis of the effects of different ethanol exposure treatments on mRNA expression is required to understand the biological basis of addiction. This will lead to more effective treatments and eventually to cures and preventive measures to treat alcohol addiction. The aim of this work was to evaluate the effects of ethanol on CpG islands of BDNF exon IX gene in regulating its expression, both “in vivo” and “in vitro”. Rat cerebellar granule cells in culture were exposed to acute ethanol, chronic ethanol or ethanol withdrawal. Our results demonstrate that ethanol exposure increases, the abundance of BDNF exon IX transcript in the three different treatment conditions. We then tested the ability of acute ethanol to alter exon IX methylation by using MSP PCR. Similarly to the effect induced by the two DNA methylation inhibitors, zebularine and RG-108, exposure of cultured neurons to 100 mM ethanol for 3h significantly increased the unmethylated state of BDNF exon IX that was about 2.5 folds grater than the methylated state. This epigenetic action of ethanol was observed also in the hippocampus of male rats treated with increasing doses of ethanol (0.8; 1.6 or 3.0 g/kg; i.p.) tested 1; 3 and 5h after injection. Ethanol induced a significant time and dose dependent increase in BDNF exon IX unmethylated DNA levels, compared with control, which showed a positive correlation with BEC. The increased unmethylated state was accompanied by a corresponding increase in the abundance of BDNF exon IX transcript. The increase in mRNA was dose dependent with the maximal effect at 3.0 g/kg 3h after injection. These results provide the first evidence for an alternative way of ethanol to alter BDNF gene expression. Thus, ethanol induced changes in CpG DNA methylation of BDNF gene seems to be an additional mechanism to implement homeostatic protective actions to prevent adverse effects of ethanol. The ability of ethanol to induce up regulation of BDNF may play a pivotal role and could result from a number of intracellular responses that include the epigenetic mechanism here described. Fitzgerald and Nestler, (1995). Clinical Neuroscience 3(3):165-73. Moonat et al., (2010). Cellular and Molecular Life Sciences 67(1):73-88

    Intestinal Microbial Ecology and Fillet Metal Chemistry of Wild Grey Mullets Reflect the Variability of the Aquatic Environment in a Western Mediterranean Coastal Lagoon (Santa Giusta, Sardinia, Italy)

    Get PDF
    Fish populations play an active role in the maintenance of aquatic ecosystems biodiversity. Their intestinal microbiota and fillet chemistry depend on abiotic and biotic factors of the water environments that they inhabit. The present study investigated the grey mullets' gut microbiota from a transitional aquatic ecosystem (Santa Giusta Lagoon, Sardinia, Italy) by a multidisciplinary approach which refers the results of (1) gut cultivable microbiota analyses (MA), (2) the trace metal assessment of fish muscle (TM), (3) the physico-chemical water monitoring (PC). MA detected the greatest number of total aerobic heterotrophic bacteria, Enterobacteriaceae and coliforms in Autumn (mean values 1.3 × 105, 2.4 × 104, 1.1 × 104 cfu g−1, respectively) when the accumulated rain and mean values of nutrients (reactive phosphorous and silica) were the highest. Marine bacteria were more numerous in Summer (mean value 7.4 × 105 cfu g−1) when the highest mean values of water temperature and salinity were registered. The gut bacteria were identified as Pseudomonas spp. (64%), Aeromonas spp. (17%), Ochrobactrum pseudogrignonense (10%), Providencia spp. (5%), Enterobacter ludwigii (2%) and Kocuria tytonicola (2%). TM showed that Ca, Na, B and Ni increased their concentrations in Winter while maxima of P, Zn, Cu and Fe were found in muscles of fish sampled in Summer. This study highlighted that the fish intestinal microbiota and metal composition of the fillet reflected the seasonal aquatic environmental variability

    Constructing Bayesian Network Graphs from Labeled Arguments

    Get PDF
    Bayesian networks (BNs) are powerful tools that are well-suited for reasoning about the uncertain consequences that can be inferred from evidence. Domain experts, however, typically do not have the expertise to construct BNs and instead resort to using other tools such as argument diagrams and mind maps. Recently, a structured approach was proposed to construct a BN graph from arguments annotated with causality information. As argumentative inferences may not be causal, we generalize this approach to include other types of inferences in this paper. Moreover, we prove a number of formal properties of the generalized approach and identify assumptions under which the construction of an initial BN graph can be fully automated

    The Steroidogenesis Inhibitor Finasteride Reduces the Response to Both Stressful and Rewarding Stimuli

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Finasteride (FIN) is the prototypical inhibitor of steroid 5α-reductase (5αR), the enzyme that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains controversial, in view of inconsistent clinical reports. Here, we tested the effects of FIN in a battery of tests aimed at capturing complementary aspects of mood regulation and stress reactivity in rats. FIN reduced exploratory, incentive, prosocial, and risk-taking behavior; furthermore, it decreased stress coping, as revealed by increased immobility in the forced-swim test (FST). This last effect was also observed in female and orchiectomized male rats, suggesting that the mechanism of action of FIN does not primarily reflect changes in gonadal steroids. The effects of FIN on FST responses were associated with a dramatic decrease in corticotropin release hormone (CRH) mRNA and adrenocorticotropic hormone (ACTH) levels. These results suggest that FIN impairs stress reactivity and reduces behavioral activation and impulsive behavior by altering the function of the hypothalamus–pituitary–adrenal (HPA) axis

    Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview

    Get PDF
    Alzheimer’s Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1−42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease

    Cross-sectional analysis of the humoral response after SARS-CoV-2 vaccination in Sardinian multiple sclerosis patients, a follow-up study

    Get PDF
    Monitoring immune responses to SARS-CoV-2 vaccination and its clinical efficacy over time in Multiple Sclerosis (MS) patients treated with disease-modifying therapies (DMTs) help to establish the optimal strategies to ensure adequate COVID-19 protection without compromising disease control offered by DMTs. Following our previous observations on the humoral response one month after two doses of BNT162b2 vaccine (T1) in MS patients differently treated, here we present a cross-sectional and longitudinal follow-up analysis six months following vaccination (T2, n=662) and one month following the first booster (T3, n=185). Consistent with results at T1, humoral responses were decreased in MS patients treated with fingolimod and anti-CD20 therapies compared with untreated patients also at the time points considered here (T2 and T3). Interestingly, a strong upregulation one month after the booster was observed in patients under every DMTs analyzed, including those treated with fingolimod and anti-CD20 therapies. Although patients taking these latter therapies had a higher rate of COVID-19 infection five months after the first booster, only mild symptoms that did not require hospitalization were reported for all the DMTs analyzed here. Based on these findings we anticipate that additional vaccine booster shots will likely further improve immune responses and COVID-19 protection in MS patients treated with any DMT

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    corecore