5 research outputs found

    High-throughput mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping for Mycobacterium tuberculosis epidemiological studies

    No full text
    International audienceThe emergence of drug-resistant forms of tuberculosis (TB) represents a major public health concern. Understanding the transmission routes of the disease is a key factor for its control and for the implementation of efficient interventions. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) marker typing is a well-described method for lineage identification and transmission tracking. However, the conventional manual genotyping technique is cumbersome and time-consuming and entails many risks for errors, thus hindering its implementation and dissemination. We describe here a new approach using the QIAxcel system, an automated high-throughput capillary electrophoresis system that also carries out allele calling. This automated method was assessed on 1,824 amplicons from 82 TB isolates and tested with sets of markers of 15 or 24 loci. Overall allele-calling concordance between the methods from 140 to 1,317 bp was 98.9%. DNA concentrations and repeatability and reproducibility performances showed no biases in allele calling. Furthermore, turnaround time using this automated system was reduced by 81% compared to the conventional manual agarose gel method. In sum, this new automated method facilitates MIRU-VNTR genotyping and provides reliable results. Therefore, it is well suited for field genotyping. The implementation of this method will help to achieve accurate and cost-effective epidemiological studies, especially in countries with a high prevalence of TB, where the high number of strains complicates the surveillance of circulating lineages and requires efficient interventions to be carried out in an urgent manner

    Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    Get PDF
    Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters

    30th Franco-Belgian conference of Pharmacochemistry

    No full text
    International audienc
    corecore