4,342 research outputs found

    Growth interruption strategies for interface optimization in GaAsSb/GaAsN type-II superlattices

    Full text link
    Recently, GaAsSb/GaAsN type II short-period superlattices (SLs) have been proposed as suitable structures to be implemented in the optimal design of monolithic multi-junction solar cells. However, due to strong surface Sb segregation, experimental Sb composition profiles differ greatly from the nominal square-wave design. In this work, the improvement of the interface quality of these SLs in terms of compositional abruptness and surface roughness has been evaluated by implementing different growth interruption times under Sb4/As4 (soaking) and As4 (desorption) overpressure conditions before and after the growth of GaAsSb layers, respectively. The combined effects of both processes enhance Sb distribution, achieving squarer compositional profiles with reduced surface roughness interfaces. It has been found that the improvement in compositional abruptness is quantitatively much higher at the lower interface, during soaking, than at the upper interface during desorption. Conversely, a larger decrease in surface roughness is achieved at the upper interface than at the lower interface. Fitting of the Sb segregation profiles using the 3-layer kinetic fluid model has shown that the increase in Sb incorporation rate is due to the decrease in segregation energy, presumably to changes in the surface reconstruction of the floating layer at the surface.Comment: 7 pages, 5 figure

    Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity

    Get PDF
    The metallicity of a supernova (SN) progenitor, together with its mass, is one of the main parameters that rules their outcome. We present a metallicity study of 115 nearby SN host galaxies (0.005<z<0.03) which hosted 142 SNe using Integral Field Spectroscopy (IFS) from the CALIFA survey. Using O3N2 we found no statistically significant differences between the gas-phase metallicities at the locations of the three main SN types (Ia, Ib/c and II) all having ~8.50±\pm0.02 dex. The total galaxy metallicities are also very similar and we argue that this is because our sample consists only of SNe discovered in massive galaxies (log(M/Msun)>10 dex) by targeted searches. We also found no evidence that the metallicity at the SN location differs from the average metallicity at the GCD of the SNe. By extending our SN sample with published metallicities at the SN location, we studied the metallicity distributions for all SN subtypes split into SN discovered in targeted and untargeted searches. We confirm a bias toward higher host masses and metallicities in the targeted searches. Combining data from targeted and untargeted searches we found a sequence from higher to lower local metallicity: SN Ia, Ic, and II show the highest metallicity, which is significantly higher than SN Ib, IIb, and Ic-BL. Our results support the picture of SN Ib resulting from binary progenitors and, at least part of, SN Ic being the result of single massive stars stripped of their outer layers by metallicity driven winds. We studied several proxies of the local metallicity frequently used in the literature and found that the total host metallicity allows for the estimation of the metallicity at the SN location with an accuracy better than 0.08 dex and very small bias. In addition, weak AGNs not seen in total spectra may only weakly bias (by 0.04 dex) the metallicity estimate from integrated spectra. (abridged)Comment: 24 pages, 16 Figures, 13 Tables, Accepted in A&

    Quantic Analysis of the Adherence of a Gram-Negative Bacteria in A HEPA Filter

    Full text link
    It is known that Gram-negative bacteria (GNB) are the most frequent bacteria in hospital units. It is also known that GNBs generate a greater number of nosocomial infections in critical areas. In the present work, the adhesion of the bacterial cell wall (BCW) to the compounds of the material layers of a high efficiency filter (HEPA) was analyzed. The analysis was carried out by means of molecular simulation and quantum chemistry. The BCW and HEPA molecules were designed using Hyperchem software for simulation. The calculations of the quantum interactions of the molecules were carried out using the theory of the electron transfer coefficient (ETC). It obtained from 4 to 6 compounds that are more likely to interact even as a chemical reaction. The compounds of the glass fibers are the ones that work best for the adhesion and destruction of the BCW

    Aperture effects on the oxygen abundance determinations from CALIFA data

    Full text link
    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.Comment: Accepted for publication in Ap

    Timing performance of radiation hard MALTA monolithic Pixel sensors

    Get PDF
    The MALTA family of Depleted Monolithic Active Pixel Sensor (DMAPS) produced in Tower 180 nm CMOS technology targets radiation hard applications for the HL-LHC and beyond. Several process modifications and front-end improvements have resulted in radiation hardness up to 2×1015 1 MeV neq/cm22 \times 10^{15}~1~\text{MeV}~\text{n}_{eq}/\text{cm}^2 and time resolution below 2 ns, with uniform charge collection efficiency across the Pixel of size 36.4×36.4 μm236.4 \times 36.4~\mu\text{m}^2 with a 3 μm23~\mu\text{m}^2 electrode size. The MALTA2 demonstrator produced in 2021 on high-resistivity epitaxial silicon and on Czochralski substrates implements a new cascoded front-end that reduces the RTS noise and has a higher gain. This contribution shows results from MALTA2 on timing resolution at the nanosecond level from the CERN SPS test-beam campaign of 2021.Comment: 8 pages, 8 figures. Submitted to Journal of Instrumentation (JINST). Proceedings of the 23rd International Workshop on Radiation Imaging Detectors IWORID 202

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography

    Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)

    Get PDF
    Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p < 0.0001); in contrast, CTPC were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to progression from MGUS to MM (p < 0.0001) and a shorter survival in MM patients with active disease requiring treatment (p <= 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a poorer outcome of both MGUS and MM

    Slow and ultra-rapid freezing protocols for cryopreserving roe deer (Capreolus capreolus) epididymal sperm collected at different times of year

    Get PDF
    10 Pág. Centro de Investigación en Sanidad Animal (CISA) / Departamento de Reproducción animalThe roe deer is a monoestrous species with a very short rutting season. The present work reports the most suitable period for collecting epididymal sperm and describes the effect of two cooling rates on the post-thaw quality of sperm. Testes were collected 24–48 h after death. Samples of sperm flushed from the epididymis were subjected to either (1) dilution in a Tris-citric acid-glucose-egg yolk-based medium with glycerol, and slow freezing in straws, or (2) dilution in the same extender but replacing the glycerol with 100 mM of sucrose, and ultra-rapid freezing in pellets. Sperm motility, acrosome and membrane integrity, morphometry and morphological abnormalities were analysed before and after cryopreservation. Spermatogenic activity was investigated via histological examination of testis sections. Several testes collected between April, May and September showed no spermatogenic activity. All those collected in June–August showed spermatogenic activity. No significant difference was detected in the cryoresistance ratios associated with the conventional slow freezing, between sperm collected during the pre-rutting (April–May) and rutting (June–August) periods. No significant differences were seen between the slow-frozen-thawed and the ultra-rapid-frozen-thawed sperm in terms of percentage of viable sperm or the percentage of sperm with morphological abnormalities. Slow freezing returned significantly better (P<0.05) values for post-thaw acrosome integrity (43.3% vs. 25.0%) and straight-line velocity (19 μm/s vs. 4 μm/s). For both freezing methods, sperm heads were smaller post-thawing than pre-freezing (P<0.001). In conclusion, both the pre-rutting and rutting season are suitable periods for freezing roe deer sperm. Ultra-rapid freezing did not provide suitable results.This research was funded by MINECO/AEI/FEDER and EU grant AGL2017-85753-R. P. Bóveda was the recipient of a grant for pre-doctoral researchers from MINECO (AEI/FSE, UE). Octavio Mejía was the recipient of a research fellowship from the PASPA-DGAPA-UNAM (México). V.N. Flores-Gil was funded by FONDECYT-CONCYTEC (grant contract number 000245-2015-FONDECYT).Peer reviewe

    Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation

    Get PDF
    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is c500=1.000.15+0.18c_{500} = 1.00^{+0.18}_{-0.15}. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 σ\sigma, (ii) 3 σ\sigma, and (iii) 4 σ\sigma. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZCIB=1.2±0.3A_{\rm tSZ-CIB}= 1.2\pm0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.Comment: 18 pages, 16 figure

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore