50 research outputs found

    Projecting land use changes using parcel-level data : model development and application to Hunterdon County, New Jersey

    Get PDF
    This dissertation is to develop a parcel-based spatial land use change prediction model by coupling various machine learning and interpretation algorithms such as cellular automata (CA) and decision tree (DT). CA is a collection of cells that evolves through a number of discrete time steps according to a set of transition rules based on the state of each cell and the characteristics of its neighboring cells. DT is a data mining and machine learning tool that extracts the patterns of decision process from observed cell behaviors and their affecting factors. In this dissertation, CA is used to predict the future land use status of cadastral parcels based on a set of transition rules derived from a set of identified land use change driving factors using DT. Although CA and DT have been applied separately in various land use change models in the literature, no studies attempted to integrate them. This DT-based CA model developed in this dissertation represents the first kind of such integration in land use change modeling. The coupled model would be able to handle a large set of driving factors and also avoid subjective bias when deriving the transition rules. The coupled model uses the cadastral parcel as a unit of analysis, which has practical policy implications because the responses of land use changes to various policy usually take place at the parcel level. Since parcel varies by their sizes and shapes, its use as a unit of analysis does make it difficult to apply CA, which initially designed to handle regular grid cells. This dissertation improves the treatment of the irregular cell in CA-based land use change models in literature by defining a cell\u27s neighborhood as a fixed distance buffer along the parcel boundary. The DT-based CA model was developed and validated in Hunterdon County, New Jersey. The data on historical land uses and various land use change driving factors for Hunterdon County were collected and processed using a Geographic Information System (GIS). Specifically, the county land uses in 1986, I995 and 2002 were overlaid with a parcel map to create parcel-based land use maps. The single land use in each parcel is based on a classification scheme developed thorough literature review and empirical testing in the study area. The possible land use status considered for each parcel is agriculture, barren land, forest, urban, water or wetlands following the land use/land cover classification by the New Jersey Department of Environment Protection. The identified driving factors for the future status of the parcel includes the present land use type, the number of soil restrictions to urban development, and the size of the parcel, the amount of wetlands within the parcel, the distribution of land uses in the neighborhood of the parcel, the distances to the nearest streams, urban centers and major roads. A set of transition rules illustrating the land use change processes during the period 1986-1995 were developed using a TD software J48 Classifier. The derived transition rules were applied to the 1995 land use data in a CA model Agent Analyst/RePast (Recursive Porous Agent Simulation Toolkit) to predict the spatial land use pattern in 2004, which were then validated by the actual land use map in 2002. The DT-based CA model had an overall accuracy of 84.46 percent in terms of the number of parcels and of 80.92 percent in terms of the total acreage in predicting land use changes. The model shows much higher capacity in predicting the quantitative changes than the locational changes in land use. The validated model was applied to simulate the 2011 land use patterns in Hunterdon County based on its actual land uses in 2002 under both business as usual and policy scenarios. The simulation results shows that successfully implementing current land use policies such as down zoning, open space and farmland preservation would prevent the total of 7,053 acres (741 acres of wetlands, 3,034 acres of agricultural lands, 250 acres of barren land, and 3,028 acres of forest) from future urban development in Hunterdon County during the period 2002-2011. The neighborhood of a parcel was defined by a 475-foot buffer along the parcel boundary in the study. The results of sensitivity analyses using two additional neighborhoods (237- and 712-foot buffers) indicate the insignificant impacts of the neighborhood size on the model outputs in this application

    Environmental odour management by artificial neural network – A review

    Get PDF
    Unwanted odour emissions are considered air pollutants that may cause detrimental impacts to the environment as well as an indicator of unhealthy air to the affected individuals resulting in annoyance and health related issues. These pollutants are challenging to handle due to their invisibility to the naked eye and can only be felt by the human olfactory stimuli. A strategy to address this issue is by introducing an intelligent processing system to odour monitoring instrument such as artificial neural network to achieve a robust result. In this paper, a review on the application of artificial neural network for the management of environmental odours is presented. The principal factors in developing an optimum artificial neural network were identified as elements, structure and learning algorithms. The management of environmental odour has been distinguished into four aspects such as measurement, characterization, control and treatment and continuous monitoring. For each aspect, the performance of the neural network is critically evaluated emphasizing the strengths and weaknesses. This work aims to address the scarcity of information by addressing the gaps from existing studies in terms of the selection of the most suitable configuration, the benefits and consequences. Adopting this technique could provide a new avenue in the management of environmental odours through the use of a powerful mathematical computing tool for a more efficient and reliable outcome. Keywords: Electronic nose, Environmental pollution, Human health, Odour emission, Public concer

    Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    Get PDF
    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis, and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production

    Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts

    Get PDF
    Biodiesel was produced using three different alkali catalysts, namely KOH, NaOH and LiOH. The aim of the study was to determine which of these is the most effective as far as Fatty Acid Methyl Ester (FAME) yield is concerned in producing biodiesel from microalgae. Three different transesterification processes were considered; conventional, microwave-assisted and ultrasound-assisted. The study was able to show that NaOH and KOH generated far better FAME values compared to LiOH in all three transesterification processes. The introduction of microwave or ultrasound in the transesterification slightly increased the FAME yield by 5% and cut the reaction time by 50%. The best FAME yield was attained when the optimum process parameters were a methanol to oil ratio of 12:1; a catalyst load of 2% for NaOH and 3% for KOH; a reaction time of 12 minutes; and a microwave output power rate of 600 watts

    Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process - UltraSound, Adsorption, and Membrane ultrafiltration (USAMe®).

    Get PDF
    Abstract The low-level presence of emerging contaminants (ECs) in the environment has raised a great concern due to their persistence, chronic toxicological, and endocrine disrupting effects on terrestrial and aquatic organisms. Wastewater treatment plants (WWTPs) have become hotspots for the spread of these contaminants to the environment as conventional processes are not efficient in removing them. Thus, the integration of advanced treatment methods within the chain of WWTPs is very essential. In this study, the innovative hybrid process USAMe® which integrates ultrasound irradiation (US), adsorption (A) and membrane filtration (Me) was investigated for the removal of ECs from secondary effluents. Diclofenac, carbamazepine, and amoxicillin were selected due to their large consumption and frequent presence in the aquatic environment. All three ECs were spiked into real secondary wastewater effluent at two concentrations of 10 ppm and 100 ppb. Membrane ultrafiltration and its combination with US (USMe) or adsorption (AMe) were also studied as control tests. The hybrid combination of all the three methods in the USAMe® processes elevated the EC removals to above 99% as compared to only around 90% in the AMe process. All effluents of the hybrid USAMe® processes gave "No Effect" to D. magna, with immobilization of ≤20%. Therefore, results showed that the USAMe® process was efficient in not only removing ECs, but also in generating safe and less toxic treated effluents; thereby displaying its potential as an advanced method for wastewater treatment

    Improved Method for In Vitro Secondary Amastigogenesis of Trypanosoma cruzi: Morphometrical and Molecular Analysis of Intermediate Developmental Forms

    Get PDF
    Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis

    Are pharmaceuticals removal and membrane fouling in electromembrane bioreactor affected by current density?

    Get PDF
    Abstract Pharmaceutical active compounds (PhACs) have been detected at significant concentrations in various natural and artificial aquatic environments. In this study, electro membrane bioreactor (eMBR) technology was used to treat simulated municipal wastewater containing widely-used pharmaceuticals namely amoxicillin (AMX), diclofenac (DCF) and carbamazepine (CBZ). The effects of varying current density on the removal of PhACs (AMX, DCF and CBZ) and conventional pollutants (chemical oxygen demand (COD), dissolved organic carbon (DOC), humic substances, ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N) and orthophosphate (PO 4 -P) species) were examined. High COD and DOC removal efficiencies (~100%) were obtained in all the experimental runs regardless of applied current density. In contrast, enhanced removal efficiencies for AMX, DCF and CBZ were achieved at high current densities. Membrane fouling rate in eMBR with respect to conventional MBR was reduced by 24, 44 and 45% at current densities of 0.3, 0.5 and 1.15 mA/cm 2 , respectively. The mechanism for pharmaceutical removal in this study proceeded by: (1) charge neutralization between negatively-charged pharmaceutical compounds and positive electro-generated aluminium coagulants to form larger particles and (2) size exclusion by membrane filtration

    Taming the terminological tempest in invasion science

    Get PDF
    \ua9 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Taming the terminological tempest in invasion science

    Get PDF
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species
    corecore